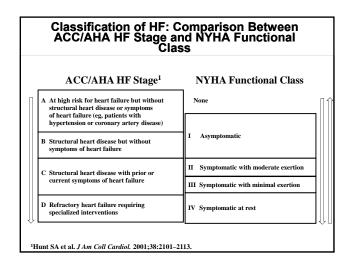
Device Therapy for Heart Failure

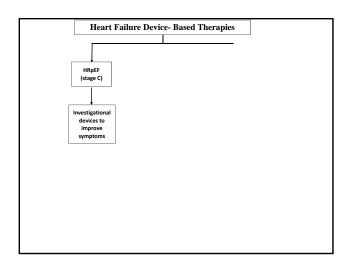
Rami Kahwash , MD
Associate Professor in Internal Medicine
Division of Cardiovascular Medicine
Section of Heart Failure/Transplant
The Ohio State University Wexner Medical Center

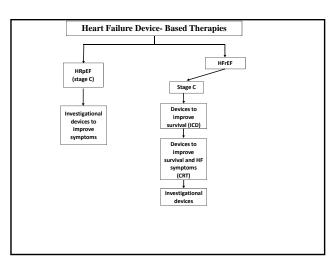
Learning Objectives

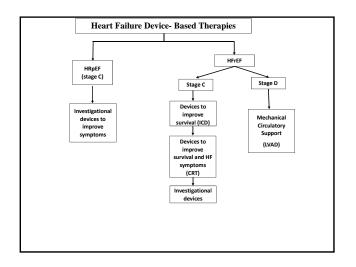
- Overview of Heart failure stages and role of device-based therapies
- Implantable Cardioverter Defibrillator (ICDs) in primary prevention of SCD
- New defibrillation strategies (wearable ICD and subcutaneous ICD)
- Cardiac Resynchronization Therapy(CRT)

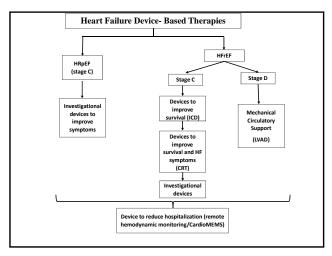

Background

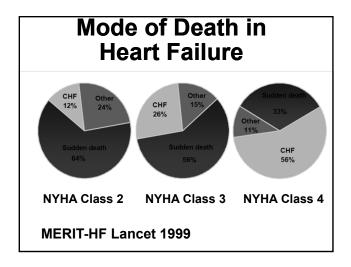

- In 2013, the ACC/AHA published an updated Guideline for the Management of Heart Failure
- New terminologies, concepts and recommendations were introduced
- An attempt was made to harmonize the guideline with other guidelines, consensus documents and position papers which are cross-referenced

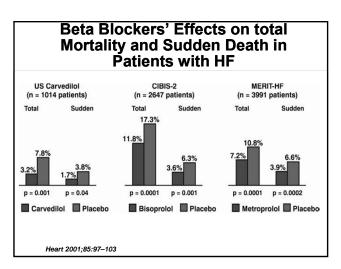

Yancy CW, et all. Circulation 2013

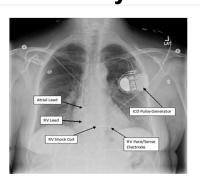

Terminology

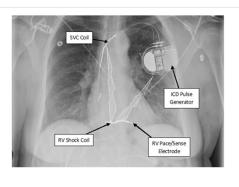

- Guidelines Directed Medical Therapy (GDMT)represents the optimal medical therapy recommended with a class 1 indication
- Heart Failure with reduce Ejection Fraction (HFrEF). LVEF ≤ 40 %
- Heart failure with preserved Ejection Fraction (HFpEF). LVEF ≥ 50 %
 - HFpEF, borderline (LVEF 41-49 %)
 - HFpEF, improved (LVEF >40 %)
- · Maintained the concept of "stages"









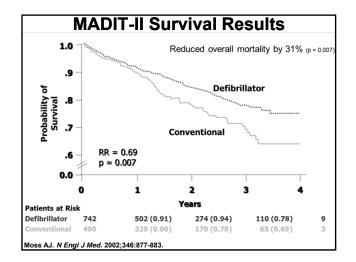

Implantable Cardioverter-Defibrillator (ICD) Basics

- > Designed to treat a cardiac tachydysrythmia
- > Performs cardioversion/defibrillation
 - Ventricular rate exceeds programmed cut-off rate
- > ATP (antitachycardia pacing)
 - Overdrive pacing in an attempt to terminate ventricular tachycardias
- > All have pacemaker function (combo devices)

Major Components of the ICD system

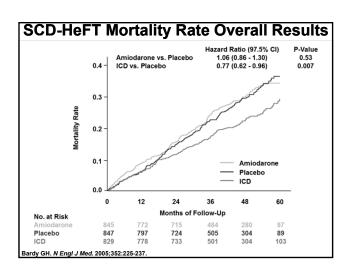
Schematic View of the Defibrillation Shock Generated by the ICD

SCD Primary Prevention Trials (ICD Vs. Conventional Therapy)


- ≻MADIT II
- >SCD-HeFT

MADIT-II

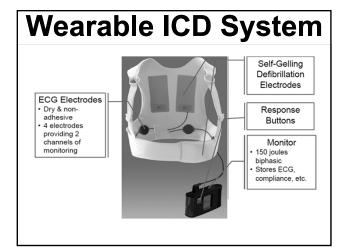
Objective:


- Evaluate the effectiveness of ICD therapy (n = 742) compared to conventional therapy (n = 490) in high-
- risk post-MI patients
- Post-MI ≥ 4 weeks, and
- LVEF ≤ 30%

Moss AJ. N Engl J Med. 2002;346:877-883

SCD-HeFT Sudden Cardiac Death in Heart Failure Trial

- Determine if amiodarone or ICD will decrease the risk of death from any cause in patients with mild-tomoderate heart failure (Class II and III).
- Maximally treated CHF for ≥ 3 months with a LVEF of ≥ .35



Who should get an ICD?

- ➤ Ischemic CM, LVEF < 0.30 (MADIT II)
- ➤ Ischemic and nonischemic dilated cardiomyopathy, NYHA class II/III CHF, LVEF < 35%. (SCD-HeFT).

Who should NOT get an ICD?

- ➤ CABG or PCI within the past 3 months-CABG-Patch ¹
- > Acute MI within the past 40 days-DINAMIT 2
- > Concomitant disease with less than 1 year likelihood of survival.
- 1) Bigger et al. N Engl J Med 1997;337:1569-74
- 2) Hohnloser S et al. N Engl J Med 2004;351:2481-2488

ICDs and MRI

- It is becoming feasible to use MRI for certain ICD and lead models that are MRI compatible if done according to certain protocols
- Consulting with specialists is necessary before ordering MRIs in patients with ICDs

Indications for ICD Deactivation

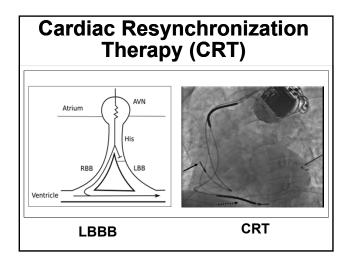
- > End-of-life care
- Recurrent inappropriate shocks due to lead failure or SVT/ AF with rapid ventricular response
- During surgical procedures requiring the use to electrocautery in close proximity to the pulse generator

Case Presentation

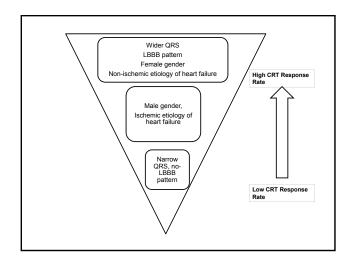
- A 45 year-old female with history of breast cancer, s/p bilateral mastectomy and chemotherapy (2 years ago). Her cancer is currently in remission with favorable prognosis. She developed Adriamycin induced cardiomyopathy and despite >9 months of guideline directed medical therapy for heart failure, her LVEF remains 30%. She belongs to NYHA FC II. Her ECG shows NSR, normal intervals, QRS 90 ms, nonspecific T-wave abnormalities. Her L subclavian vein is occluded and she has a history of DVT in the R subclavian vein as a complication of prior Port-a-cath
- Intravenous ICD implant is recommended?
- A. True
- B. False

Subcutaneous ICD

- >80 joules (delivered)
 >69cc, 145 grams
 >Active generator
 >5 year longevity
 >Post-shock pacing
 >Single lead connection
 >Full featured episode
 storage
- ≻No Brady pacing or ATP


Subcutaneous ICD VS. Transvenous ICD

Factors Favor S-ICD


- Young and active (less lead failure)
- CHD that limits lead placement, valve surgery
- Indwelling catheters
- > Immunocompromised
- Inherited channelopathies (low VT risks).

Factors Favor TV- ICD

- Recurrent monomorphic VT (role of ATP)
- Bradycardia requiring pacing
- > Indication for CRT
- High risk for VT (e.g. sarcoidosis, ARVD).
- Preference for remote monitoring

		M	lajo	r C	RT I	rials		
Trial	Design	Patients	Mean follow-up	NYHA	LVEF Inclusion criteria	QRS Inclusion criteria	Primary end point	Results significantly favoring intervention group
COMPANION (2004)	• CRT-D • CRT-P • ICD	• 617 • 595 • 308	15	III, IV	≤35%	≥ 120 ms	All-cause mortality or hosp	+/+
CARE-HF (2005)	• CRT-P • Med	• 409 • 404	29	III, IV	≤35%	≥ 120 ms	All-cause mortality or cardiovascular hospitalization	+
MADIT-CRT (2009)	• CRT-D • ICD	• 1089 • 739	29	1, 11	≤30%	≥ 130 ms	All-cause mortality or HF hosp	+

	NYHA Class I	NYHA Class II	NYHA Class III & Ambulatory Class IV	
Class I Indications		LVEF≤35% QRS≥150ms LBBB pattern Sinus rhythm	• LVEF ≤ 30% • QRS ≥ 150ms • LBBB pattern • Sinus Rhythm	
Class IIa ndications		• LVEF s 35% • QRS 120-149 ms	LVEF ≤ 35% QRS 120-149 ms LBBB pattern Sinus rhythm	
Clas		LBBB pattern Sinus rhythm	• LVEF ≤ 35% • QRS ≥ 150ms • Non-LBBB pattern • Sinus rhythm	
Class IIb ndications	LVEF≤ 30% QRS ≥ 150ms LB8B pattern Ischemic cardiomyopathy	LVEF ≤ 35% QRS ≥ 150ms Non-LBBB pattern Sinus rhythm	LVEF ≤ 35% QRS 120-149 ms Non-LBBB pattern Sinus rhythm	

Devices to Reduce Readmissions

Sitaramesh Emani, MD
Director of Heart Failure Clinical Trials
Assistant Professor of Clinical Medicine
Department of Internal Medicine
Division of Cardiovascular Medicine
The Ohio State University Wexner Medical Center

Burden of Heart Failure

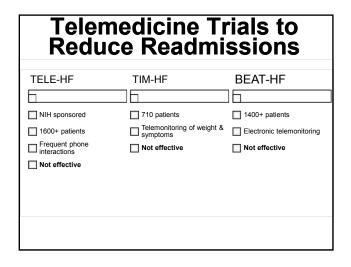
Heart failure is a big problem ...

- HF affects 5.5-7 million Americans
- \$31 Billion on HF hospitalizations
- Most frequent cause of rehospitalization in the US
- Importantly, <u>repeat HF admissions lead to</u> worsening mortality!

Heidenriech PA, et al, *Circ Heart Fail* 2013 Jencks SF, et al, *NEJM* 2009 Setoguchi S, et al, *Am Heart J* 2007

Pressure Autonomic Changes Adaptation Impedance Changes Adaptation Impedance Changes HF Symptoms Weight Changes, HF Symptoms HF Hospitalization

Traditional Methods: Weights & Symptoms


Benefits

- · Easy to understand
- Minimal equipment
- Low costs

Drawbacks

- · Low compliance rates
- Variability in implementation
- Sensitivity <25%

Moser DK, *Am Heart J* 2005 van der Wal MH, *Eur Heart J* 2006 Abraham WT. *Congest Heart Fail* 2011

Bioimpedance

Benefits

- Can be obtained from devices already implanted
- · Correlate well to invasive measures

Drawbacks

- · Not a primary indication for device implant
- · Unlikely to be an option for HFpEF
- · Low positive predictive value

Yu CM, Circ 2005 Conraads VM, Eur Heart J 2011

FAST DOT-HF OptiLink-HF Good sensitivity No reduction in hospitalizations Increased hospitalizations Exploratory only No hospitalization Data did not induce clinical actions

Autonomic Adaptation: Biomarkers

Benefits

- Both HFpEF & HFrEF
- · Repeatable and widely available

Drawbacks

- Requires phlebotomy (lab visit)
- Costs
- Confounding variables (e.g. obesity)
- · Unclear what constitutes improvement

Yu CM, Circ 2005

Bio Re	Biomarker Trials for Rehospitalization				
Trial	Biomarker	Size	Outcome		
Troughton, et al	BNP	69	Positive		
STARS-BNP	BNP	220	Positive		
Berger R, et al	NT-proBNP	278	Positive		
PROTECT	NT-ProBNP	151	Positive		
PRIMA	NT-ProBNP	345	Negative		
BATTLE- SCARRED	NT-proBNP	364	Negative		
TIME-CHF	BNP	499	Negative		
GUIDE-IT	NT-proBNP	1100 (planned)	Stopped Early (ineffective)		

Hemodynamic Monitoring

Benefits

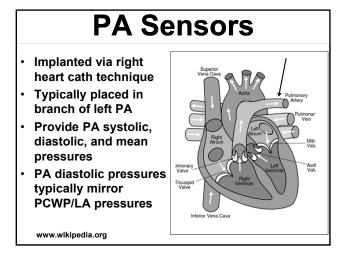
- Both HFpEF & HFrEF (CardioMEMS™)
- · Hemodynamics correlate well to HF events
- · Occurs early in the decompensation process
- Known targets (PAD < 18 mmHg)

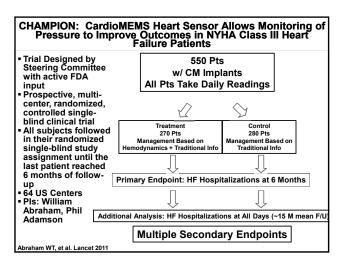
Drawbacks

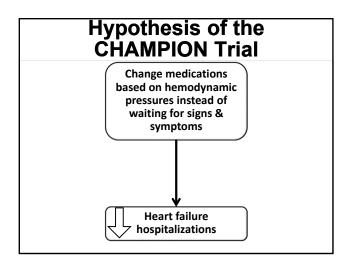
- · Invasive procedure
- · Additional device (CardioMEMS)
- Monitoring by staff required

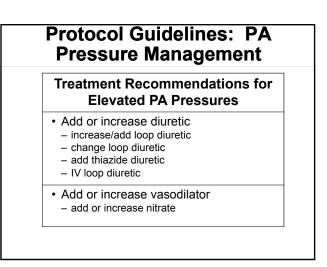
Stevenson LW. Am J Cardiol 1990 Morley D, Am J Cardiol 1994 Stevenson LW, Circ Heart Fail 2010

Hemodynamic Monitoring: Sensor Choice · Good for patients who need devices Unavailable to patients without **RV** Lead device Worsening battery life LA pressure better than PAD? An additional device implant Transseptal implant associated with increased complications LA lead


PA Sensor


- No battery
 Low implant complication rate
 Limited by body habitus
 Cost & reimbursement factors

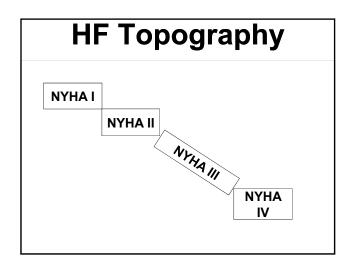

Hemodynamic Monitoring: The Secret Sauce

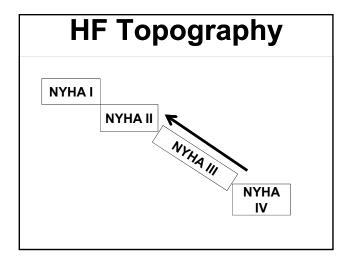

- Early trials with hemodynamic monitoring did not improve outcomes. Why?
- Successful use of hemodynamics requires treatment to a numeric goal
- This must happen independent of symptoms
 - Physiologic changes will occur before symptoms

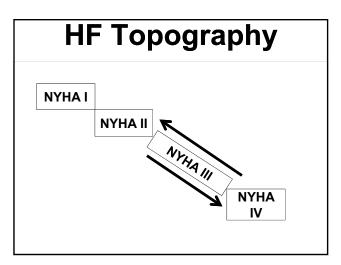
Bourge RC, JACC 2008

Primary E	Effica	cy E	Endpo	oint	t	
	Treatment (n=270)	Control (n=280)	Relative Risk Reduction	p- value ^[1]	NN T	
Primary Efficacy Endpoint: HF Related Hospitalizations (Rate for 6 months)	84 (0.32)	120 (0.44)	28%	0.0002	8	
Supplementary Analysis: HF Related Hospitalizations (Full Duration - Annualized Rate)	158 (0.46)	254 (0.73)	37%	<0.000	4	
[¹¹ p-value from negative binomial regre: NNT = Number Needed to Treat	ssion		'		l	
Abraham WT, et al. Lancet 2011						

GDMT Class	HF Hospitalization		Mortality	
	Hazard Ratio	NNT	Hazard Ratio	NNT
ACEi/ARB	0.59	4	0.48	7
Beta- blocker	0.66	5	0.59	11
ACEi/ARB & Beta- blocker	0.57	3	0.43	7


Hemodynamic Monitoring Summary


- Implantable hemodynamic monitors provide direct and actionable measurements of intracardiac and pulmonary artery pressures
- Management guided by such monitors reduces the risk of heart failure hospitalizations
- This approach promises to revolutionize the management of heart failure patients
 - Crisis management → Stability management


CardioMEMS™: Current Status

- Only approved PA pressure monitoring system at present
- Approved for use in NYHA III HF patients
- · Intended to:
 - Reduced HF hospitalizations
 - Improved QoL
 - No indication to improve survival

Mechanical Circulatory Support Devices

NYHA Classification

1 year mortality of NYHA III HF is 10-15%

Scrutenid et al, EHJ 1994 Gheorghiade et al, JACC 2013

NYHA Classification

1 year mortality of NYHA III HF is 10-15%

A HF hospitalization is a strong predictor of mortality (NYHA IIIb-IV)

Scrutenid et al, EHJ 1994 Gheorghiade et al, JACC 2013

NYHA Reproducibility

Inter-observer evaluation
Exact reproducibility: 56%
Within 1 functional class: 93%

Goldman et al, Circ 1981 Franciosa et al, Am J Med 1979 Bennett et al, JHLT 2002

NYHA Reproducibility

Inter-observer evaluation
Exact reproducibility: 56%
Within 1 functional class: 93%

NYHA III best correlated with exercise testing (75% of patients)

Goldman et al, Circ 1981 Franciosa et al, Am J Med 1979 Bennett et al, JHLT 2002

Cardiopulmonary Exercise Testing

- Also known as metabolic stress test, VO2 test
- Peak VO₂ performance <14 ml/kg/min is associated increased risk of death within 24 months in HF patients

Mancini D, et al, Circ 1991

No VO₂ testing? Try a 6minute walk

- Distance ≤ 468 m (1535 ft) predicts higher mortality and hospitalization risk
- · 6MWT is a good screening tool
- However, not as strongly correlated as VO₂ data

Wegrzynowska-Teodorczyk K, et al, J Physiotherapy 2013

The High-Risk HF Patient

1 or more of the following:

- HF Sx that fail to respond to medical therapy (persistent NYHA III or worse symptoms)
- Peak VO₂ <14 ml/kg/min
- Intolerance to HF meds (esp new intolerance)
 - Hypotension
 - · Renal dysfunction
 - Bradycardia
- Frequent hospitalizations
 - 2 in 3 months
 - 3 in 6 months
 - Need for inotropes during hospital stay

Treatment Options for High-Risk HF Patients

Transplant

- · Good long term survival
- Strict selection criteria
- · Limited supply of donor hearts
- · Complex post-transplant medical regimen

Ventricular Assist Devices

- Improving long term survival (>70% at 2 years)
- · Non-limited resource
- Can be bridge-to-transplant (BTT) or destination therapy (DT)
- · Requires anti-coagulation
- · Complex post-implant medical regimen

Palliative Care/Hospice

Quality of life > survival

VAD Criteria

- Used as either Bridge to Transplant (BTT) or Destination Therapy (DT)
- EF≤ 25%
- For BTT must be listed for transplant
- For DT:
 - Failed optimal therapy for 45 of last 60 days
 - Or inotrope dependent (minimum 14 days)
 - Or IABP x 7 days
 - Peak VO₂ ≤ 14

www.cms.gov

Ventricular Assist Devices

Summary of VAD Therapy for HF

- Improves survival
- Improves functional status
- Improves quality of life
- Improving technology to reduce complications
- Part of guideline recommendations for treatment of HF

Jorde U, et al, JACC 2014 Rogers J, et al, JACC 2010 Yancy CW, et al, JACC 2013