
Malignant Melanoma

Alicia M. Terando, MD
Assistant Professor of Surgery
Department of Surgery
Division of Surgical Oncology
The Ohio State University Wexner Medical Center

Background

- Melanoma is a malignancy of pigmentproducing cells located predominantly in the skin, but also eyes, ears, GI tract, mucous membranes
- · Accounts for 4% of all skin cancers
- Causes the greatest number of skin cancer-related deaths worldwide
- Early detection is the best means of reducing mortality

American Cancer Society Statistics - 2017

87,110 estimated new cases (52,170 men and 34,940 women)

9,730 melanoma deaths estimated

Incidence Rates by Race

Whites: 1:50Hispanic: 1:200Black: 1:1000

Table 1. Risk factors for devel melanoma	oping cutaneous
Risk factor	Estimated rolative risk
High-risk traits	
Xeroderma pigmentosum Dysplastic nevi, prior melanoma, and familial melanoma	1000 500
Dysplastic nevi, no prior melanoma, and	148
familial melanoma Dysplastic nevi, no PH*, or FH* of melanoma	7-27
Many nevi (> 50)	7-54
Caucasian (versus African American)	15-20
Congenital melanocytic nevi (especially large nevi)	17-21
Personal history of melanoma	9
Cutaneous melanoma in first-degree blood relative Love-risk traits	8
Dense sun-induced freckles	3-20
Prior history of NMSC	3-17
Immunosuppression	2-8
Other phenotypic traits: red hair, blond hair, blue eyes	1-6
History of severe and painful sunburns	1-6
Sun sensitivity, relative inability to tan	1-5

Sun Exposure

UVA radiation (320-400 nm) - penetrates deeper into the dermis. Responsible for suninduced changes in dermal connective tissue and loss of elasticity (wrinkles, signs of aging)

UVB (290-320 nm) - causes sunburn, induction of increased melanin production in skin

UVA and UVB carcinogenic Also found in tanning beds

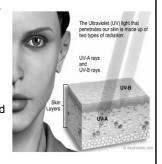
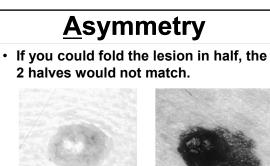
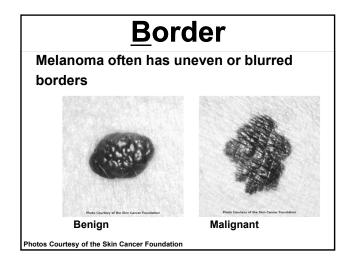
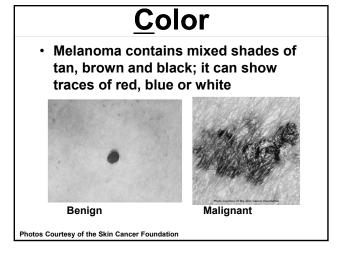
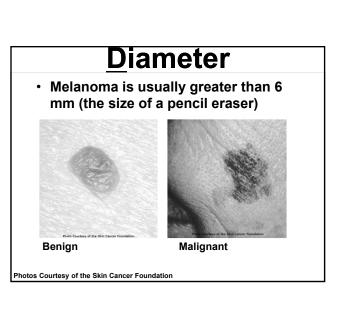



Image source: FDA, Radiation-emitting Products, Ultraviolet Radiation (February 2010). https://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/Tanning/ucm116425.htm

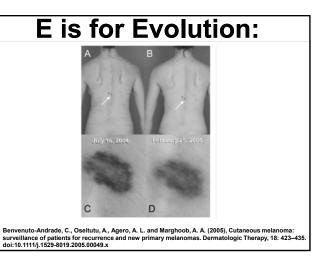
Melanoma: Diagnosis

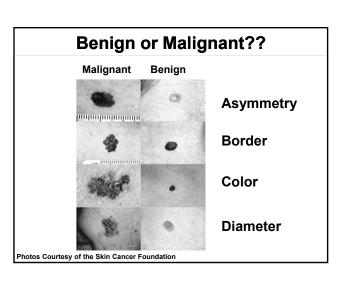

- Early diagnosis is key to improved outcomes
- ABCDE
 - Asymmetry
 - Border irregularity
 - Color
 - Diameter
 - Evolution




Malignant

Benign





Evolution and other suspicious signs

- Changes in appearance, such as spreading of pigment into surrounding skin
- A mole that looks scaly, oozes or bleeds
- · Itching, tenderness or pain in a mole
- · Brown or black streak under a nail
- · Bruise on the foot that does not heal

ABCD: asymmetry, borders, color, diameter > 6mm Benvenuto-Andrade, C., Oseitutu, A., Agero, A. L. and Marghoob, A. A. (2005), Cutaneous melanoma: surveillance of patients for recurrence and new primary melanomas. Dermatologic Therapy, 18: 423–435. doi:10.1111/j.1529.8019.2055.00049.x

Histologic Subtypes of Melanoma

Superfical spreading melanoma
Nodular melanoma
Lentigo maligna melanoma
Acral lentiginous

Superficial spreading melanoma

- Most common subtype (~70%)
- Occurs anywhere on the body (non-chronic sun damaged skin)
- Derives its name from histologic evidence of lateral growth for a period of time before vertical growth

Nodular melanoma

- Comprise 15-30% of all melanomas
- Discrete nodule with dark black pigmentation is typical clinically
- Present with clinical and histologic evidence of vertical growth only

Nodular melanoma Nodular melanomas present as discrete nodules, usually with dark pigmentation. Courtesy of James C

Lentigo maligna melanoma

- ~ 5% of melanomas
- Arises from in situ melanoma on sundamaged skin
- Usually head or neck

Lentigo maligna melanoma Lentigo maligna melanoma usually arises in areas of sundamaged skin, particularly on the head and neck. Courtesy of James C Shaw, MD.

Acral Lentiginous Melanoma

- ~ 2-10% of melanomas
- Most common subtype in dark-skinned individuals
- Involves palms, soles, and nail beds
- More aggressive than other types – ? due to depth at diagnosis

Mucosal Melanoma- where the "sun don't shine"

- •Rare, but can occur on almost any mucosal surface
- •2x higher in whites vs blacks
- Head/neck (ie nasal, sinus, mouth), female genital tract, anorectal region, urinary tract

Image courtesy of Dermatology Online Journal © The Regents of the University of California, Davis campus. Individual articles © by their authors. All material is available under the Creative Commons BY-NC-ND license.

Melanoma: Diagnosis

Excisional biopsy (elliptical, punch, or saucerization): 1-3 mm margin, avoid larger margin to permit accurate lymphatic mapping

Full thickness incisional or punch: attempt to perform in clinically thickest portion of lesion

Evaluation of Patients with Newly Diagnosed Melanoma

- Pathology
- Breslow depth
- Ulceration
- •Mitotic rate
- Satellites?Status of the deep margin –

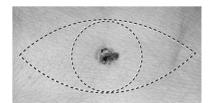
important for thin melanoma

- Physical Exam
- •Size and location of the lesion?
- •Residual pigment?
- •Satellites?
- •Palpable or suspicious nodes?

Melanoma: surgical care

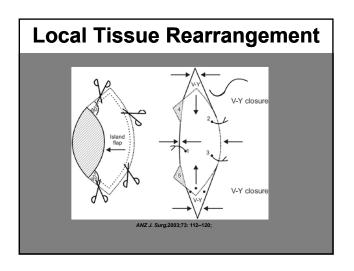
Wide excision of the primary lesion

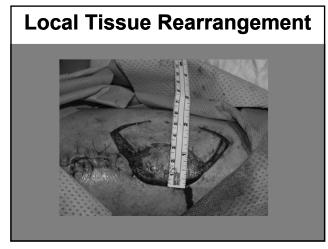
Nodal assessment

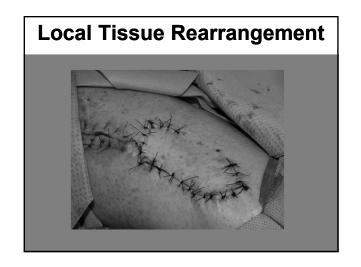

Surgical Margins

<u>Tumor Thickness</u> <u>Recommended margin</u>

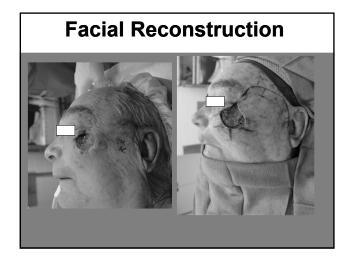
- In situ - 0.5 cm - ≤ 1 mm - 1 cm - 1.01 - 2 mm - 1 - 2 cm - 2.01 - 4 mm - 2 cm - > 4 mm - 2 cm

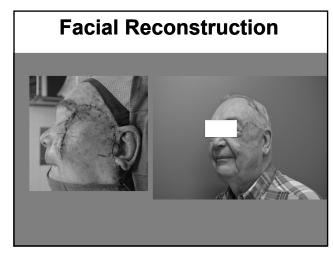

Margins of >2cm do not improve rate of local recurrence, disease-free survival, or overall survival, but they do increase the risk of requiring a skin graft or flap closure of the defect

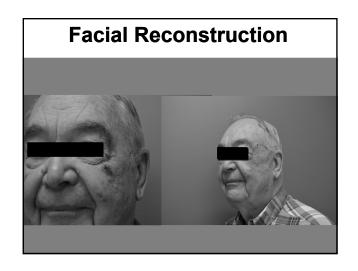

Wide excision with Primary Closure

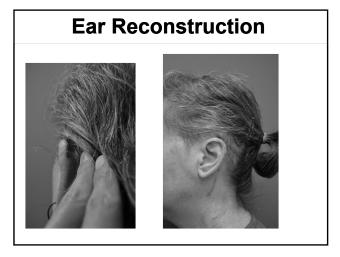



Length = 3-4 x Width


Skin graft Www.eatorhard.com Scent M. ad. Skin Crofts—Indications. Applications and Current Research. Aircust 29: 2011







How and When to Manage the Draining Lymph Node Basin

Elective Versus Therapeutic Lymph Node Dissection

Therapeutic lymph node dissection "watch and wait"

- -Delayed until the time of nodal recurrence
- Avoided LND complications in nodenegative patients.
- Strategy assumes there will be no evidence of distant metastatic disease at the time of nodal recurrence – not necessarily

Elective Versus Therapeutic Lymph Node Dissection

Elective lymph node dissection "search and destroy"

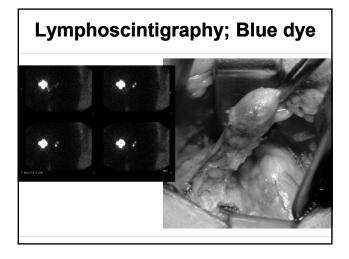
- -Performed at the time of WLE.
- -80% of patients were nodenegative.
- Survival advantage in retrospective studies.

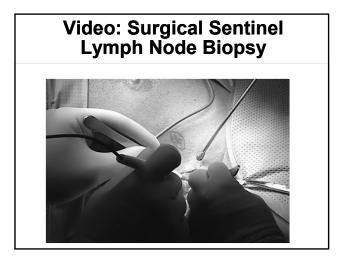
Therapeutic vs. Elective Lymph Node Dissection

Therapeutic

- Avoid complications from node dissection in node negative patients
- Risk of local failure
 Potentially allowing greater opportunity for metastatic spread

Elective


- Subjecting node negative patients to surgical morbidity
- Decrease risk of local failure
- Some patients will develop metastatic disease without nodal disease


Revolution circa 1994: Sentinel lymph node biopsy

- Developed by Dr. Donald Morton at the John Wayne Cancer Center in Los Angeles
- · Identify the first draining lymph node
- If the sentinel node is negative extremely unlikely that there is any disease in the nodal basin
- If the sentinel node is positive completion lymph node dissection
- · Reserve lymphadenectomy for the patients who really need it

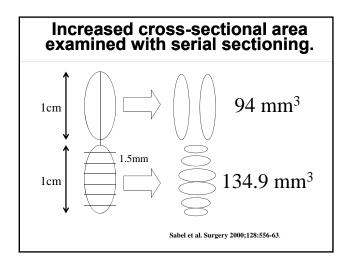
Video: Injection and Lymphoscintigraphy

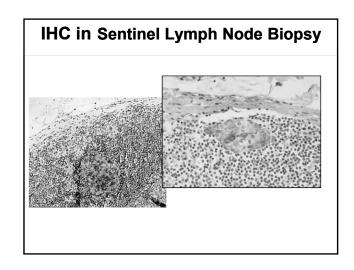
When do we do Sentinel Lymph Node Biopsy?

- NCCN recommendations:
 - SLN biopsy for patients with melanoma > 1mm regardless of characteristics. Standard of care.
 - For lesions 0.75-1.0 mm, consider SLN biopsy if there are aggressive features such as:
 - Ulceration
 - · Clark level IV or V
 - · (Satellitosis)
 - (Regression)
 - (Young Age)
 - (High Mitotic Rate)

Some consider SLNbx for these, too

The Case for Sentinel Lymph Node Biopsy


Better pathologic examination

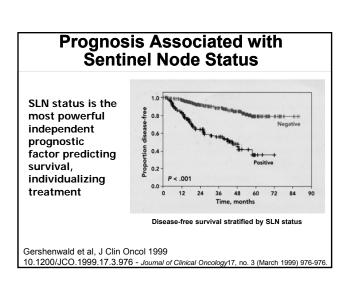

Powerful predictor of survival

Fewer regional relapses, less morbidity with CLND after + SLNBx vs. TLND after nodal Recurrence

Avoid complications from ELND for node negative patients

Survival benefit to SLNBx?

The Case for Sentinel Lymph Node Biopsy

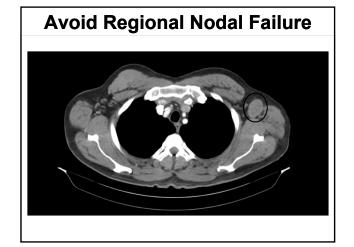

Better pathologic examination

Powerful predictor of survival

Fewer regional relapses, less morbidity with CLND after + SLNBx vs. TLND after nodal recurrence

Avoid complications from ELND for node negative patients

Survival benefit to SLNBx?


The Case for Sentinel Lymph Node Biopsy

Better pathologic examination Powerful predictor of survival

Fewer regional relapses, less morbidity with CLND after + SLNBx vs. TLND after nodal recurrence

Avoid complications from ELND for node negative patients

Survival benefit to SLNBx?

The Case for Sentinel Lymph Node Biopsy

Better pathologic examination

Powerful predictor of survival

Fewer regional relapses, less morbidity with CLND after + SLNBx vs. TLND after nodal recurrence

Avoid complications from ELND for node negative patients

Survival benefit to SLNBx?

Lymphedema http://www.medsci.org/v07/p0353ijmsv07p0353g02.jpg

The Case for Sentinel Lymph Node Biopsy

Better pathologic examination

Powerful predictor of survival

Fewer regional relapses, less morbidity with CLND after + SLNBx vs. TLND after nodal recurrence

Survival benefit to SLNBx?

Multicenter Selective Lymphadenectomy Trial -I

Comparing:

- wide excision alone
- wide excision + sentinel lymph node biopsy

Multicenter Selective Lymphadenectomy Trial -I 1.2 – 3.5 mm thickness cutaneous melanoma Wide local excision with Lymphatic mapping SLN Positive SLN Negative Perform Lymphadenectomy Follow for Survival

The NEW ENGLAND JOURNAL of MEDICINE ESTABLISHED IN 1812 FEBRUARY 13 \(\frac{1}{2}\) 2014 VOL. 370 NO. 7 Final Trial Report of Sentinel-Node Biopsy versus Nodal Observation in Melanoma D.L. Morton, J.F. Thompson, A.J. Cochran, N. Mozzillo, O.E. Nieweg, D.F. Roses, H.J. Hoekstra, C.P. Karakousis, C.A. Puleo, B.J. Coventry, M. Kashani-Sabet, B.M. Smithers, E. Paul, W.G. Kraybill, J.G. McKinnon, H.-J. Wang, R. Elashoff, and M.B. Faries, for the MSLT Group*

MSLT-1 Results

- · 2001 Patients with primary melanoma
- Wide excision alone vs wide excision + SLN biopsy
- Overall, no difference in 10 year melanoma specific survival
- Among node positive patients (either sentinel node positive or nodal recurrence during observation) 10 year melanoma specific survival:
 - Sentinel node bx: 62.1%
 - Observation (w/e alone): 41.5%

Multicenter Selective Lymphadenectomy Trial - II

 + SLNbx patients randomized to CLND vs nodal observation (with clinical examinations and ultrasound) to determine if CLND improves relapse rate or survival

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 181

JUNE 8, 201

VOL. 376 NO. 23

Completion Dissection or Observation for Sentinel-Node Metastasis in Melanoma

M.B., Faries, J.F., Thompson, A.J., Cochran, R.H. Anditbacka, N. Mozzillo, J.S., Zager, T. Jahkola, T.L. Bowles, A. Testori, P.D. Beitsch, H.J., Hoekstra, M. Moncrieff, C. Ingvar, M.W.J.M. Wouters, M.S., Sabel, E.A. Levine, D. Agnese, M. Henderson, R. Dummer, C.R. Rossi, R.I. Neves, S.D. Trocha, F. Wright, D.R. Byrd, M. Matter, E. Hsueh, A. MacKenzie-Ross, D.B. Johnson, P. Terheyden, A. C. Berger, T. L. Huston, J.D. Wayne, B.M. Smithers, H.B. Neuman, S. Schneebaurn, J.E. Gershenvald, C.E. Ariyan, D.C. Desai, L. Jacobs, K.M. McMasters, A. Gesierich, P. Hersey, S.D. Bines, J.M. Kane, R.J. Barth, G. McKinnon, J.M. Farma, E. Schultz, S. Vidal-Sicart, R.A. Hoefer, J.M. Lewis, R. Scheri, M.C. Kelley, O.E. Nieweg, R.D. Noyes, D.S.B. Hoon, H.-J. Wang, D.A. Elashoff, and R.M. Elashoff

MSLT-II Results

- 1934 patients node positive, intermediate thickness melanoma
- Randomized to completion lymph node dissection or nodal observation with ultrasonography
- 3-year Melanoma Specific Survival Similar
- 3-year Disease-Free Survival slightly higher in dissection group (68% vs 63%)
- Lymphedema 24% in dissection group vs 6% in the observation group

Management of Positive Lymph Nodes

Positive Sentinel Node - Observation

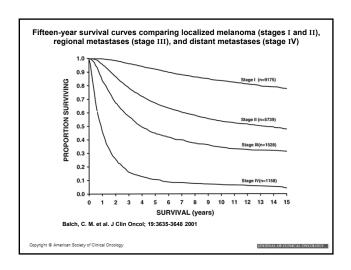
Palpable Lymph Node in a patient with a primary melanoma, or a history of melanoma

- FNA to get a tissue diagnosis
- If confirmed to be melanoma, staging workup indicated to rule out distant metastatic disease
- If no distant disease, lymph node dissection

Melanoma

Kari Kendra, MD, PhD
Associate Professor of Internal Medicine
Department of Internal Medicine
Division of Medical Oncology
The Ohio State University Wexner Medical Center

Metastatic Disease


Case 1

25 y/o male:

- Presents with SOB
- Exam: left axillary mass
- CT: bilateral pulmonary nodules, liver nodules, and left axillary mass
- PMH: stage IIb melanoma, left arm, resected
- Biopsy of axillary mass: melanoma

What is his prognosis?

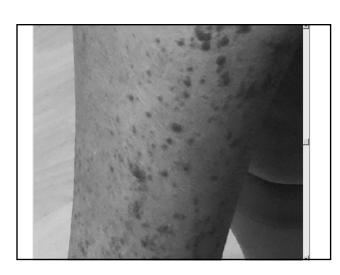
What treatments are available?

Recurrent melanoma: Treatment

Localized

- Surgery isolated metastases, limited in size and number, rendered disease free
- Radiation CNS lesions, cord compression, pain control
- Tree (attenuated oncolytic HSV that contains GMCSF)—lesions accessible to injection

T-VEC


Talimogene laherparepvec

FDA approved as monotherapy for localized treatment of unresectable cutaneous, subcutaneous, and nodal lesions.

- ORR 26%
- Durable response rate 16.3%
- Median overall survival 23.3 mo (Annals of Pharmacotherapy, 2017)

Administration

- Initial injection 1 x 10(6) PFU/mL, up to 4 mL
- \blacksquare Second injection (3 weeks)– 1 x 10(8) PFU/mL, up to 4 L
- \blacksquare Subsequent injections (q2 weeks) 1 x 10(8) PFU/mL, up to 4 mL

Case 1

25 y/o male:

- Presents with SOB
- Exam: left axillary mass
- CT: bilateral pulmonary nodules, liver nodules, and left axillary mass
- PMH: stage IIb melanoma, left arm, resected
- Biopsy of axillary mass: melanoma (BRAF V600e mutation present)

This patient has widespread disease.

Which systemic treatment to use?

Metastatic melanoma

Systemic therapy:

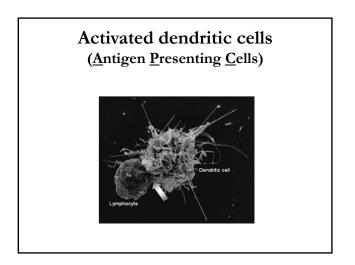
- Chemotherapy –targets rapidly cycling cells
- *Immunotherapy* –activates the immune system to recognize and destroy the cancer
- *Targeted therapy* for tumors with specific mutations

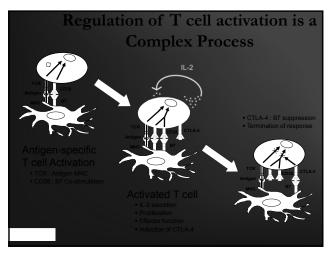
Other targeted therapies (under investigation)

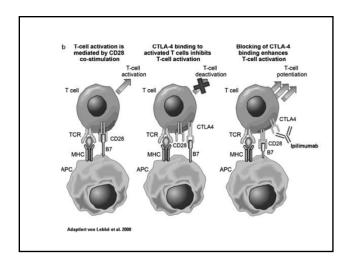
C-kit

Imatinib (Gleevac)

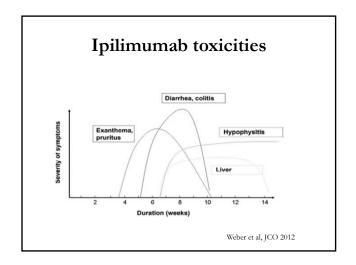
NRAS


Trametinib


C-Met


crizotinib cabozantinib

Mechanism of action: immunotherapies



year 44% 46% 25% year 22% 24% 14%	Survival Rate	Ipilimumab + gp100	Ipilimumab alone	Gp100 alone
year 22% 24% 14%	1-year			

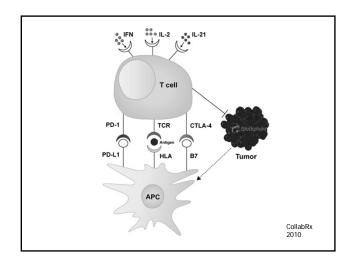
Immune-related Adverse Events associated with ipilimumab

- Rash
- Colitis/enteritis
- Transaminitis
- Thyroiditis
- Adrenal insufficiency
- Hypophysitis

Hodi et al, NEJM, 2010

Metastatic disease: Ipilimumab

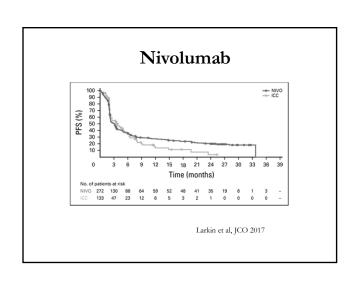
Advantages

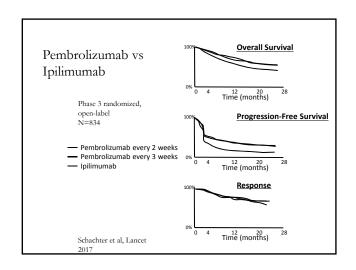

- Response rate improved over chemotherapy
- Durable responses
- Limited treatment duration

Disadvantages

- Delayed onset of response
- Toxicities
- Response rate not high enough

Ipilimumab


Survival Rate	Ipilimumab + gp100	Ipilimumab alone	Gp100 alone
1-year	44%	46%	25%
2 mage	22%	24%	1.4%

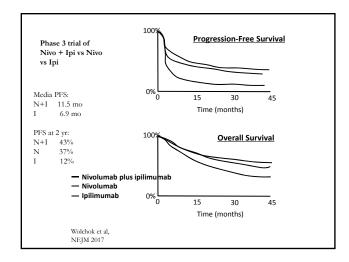


Mechanism of action: immunotherapies

- Anti-CTLA4:
 - Ipilimumab
- Anti PD1
 - Nivolumab
 - Pembrolizumab

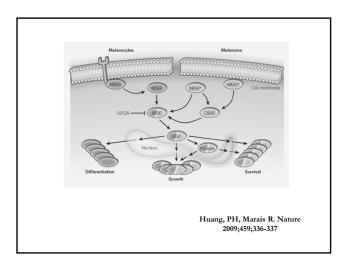
	Nivolumab (n=120)	ICC (n=47)
Objective response	38 (31.7%)	5 (10.6%)
Best overall response		
■ CR	4 (3.3%)	0
■ PR	34 (28.3%)	5 (10.6%)
■ SD	28 (23.2)	16 (34.0%)
■ PD	42 (35.0%)	15 (31.9%)
 unable to establish 	12 (12.0%)	11 (23.4%)

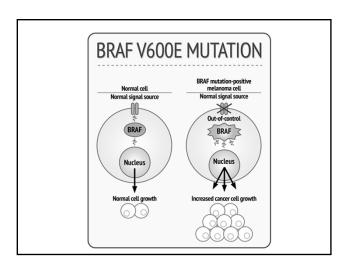
PD-1 blockade: pembrolizumab, nivolumab


Advantages

■ IL2

- Low toxicity profile
- Increased response
- More rapid response
- Durable response


Disadvantages


- Duration of treatment is unkown
- Cost
- Unexpected autoimmune toxicities

Systemic therapies for metastatic disease **Immunotherapies** Targeted therapies BRAFi Single agent ■ Ipilimumab ■ Dabrafenib ■ Nivolumab ■ Vemurafenib ■ Pembrolizumab MEKi ■ Trametinib ■ Cobimetinib Combination ■ Ipi/nivo

Mechanism of action: targeted therapies

Objective Responses with vemurafenib

N = 132

- ORR 53%
 - CR 6%
 - PR 47%
- Median duration of response 6.7 mo
- Responses: M1a, M1b, M1c
- The majority with > 30% decrease in change from baseline (RECIST

Sosman et al, 2012

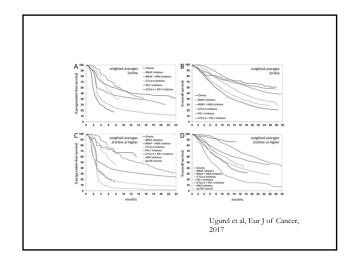
Inhibition of the BRAF pathway Single agent (dabrafenib) Combination (dabrafenib/trametinib) (N=211) (n=212) ■ 25.1 mo ■ 18.8 mo Median OS **■** 68% **■** 74% 1 yr OS 2 yr OS ■ 42% **■** 51% Median PFS ■ 8.8 mo ■ 11.0 mo Long et al, Lancet 2015

	Single agent (dabrafenib) (N=211)	Combination (dabrafenib/trametinib) (n=212)
3-year PFS	■ 12%	22 %
3-year OS	■ 12%	■ 32%
		(58% of those alive at 3 yrs remained on combination therapy)

Dabrafenib Adverse events

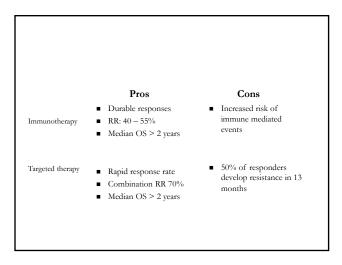
- Peripheral edema (17 31%)
- Dermatologic
 - Alopecia (22%)
 - Hand-foot syndrome (20%)
 - Hyperkeratosis (37%)
 - Night sweats (6 24%)
 - Papilloma (27%)
 Rash (17-53%)
- Endocrine
 - Hyperglycemia (50%)
 - Hypokalemia/hypophosph.
- Abdominal pain, constipation/diarrhea, N/V ■ Hematologic
- Anemia, leukopenia, neutropenia, thrombocytopenia
- Hepatic
- Musculoskeletal
 - Arthralgiamyalgia
- Other
 - Fatigue, fever. rigors

	Dabrafenib	Dabrafenib/trametinib
quamous cell	9%	2%
Hyperkeratosis	32%	3%
kin papilloma	21%	14%
Hypertension	14%	22%
yrexia	28%	51%
Chills	16%	30%
		Flaherty et al NEJM 2012


Case 1

25 y/o male:

- Presents with SOB
- Exam: left axillary mass
- CT: bilateral pulmonary nodules, liver nodules, and left axillary mass
- PMH: stage IIb melanoma, left arm, resected
- Biopsy of axillary mass: melanoma (BRAF V600e mutation present)


What is this patients prognosis?.

Which systemic treatment to use?

Case 1

- Patients prognosis is changing. The recently approved therapies have had significant impact on the duration and quality of life for some.
- Treatment options:
 - Immunotherapies vs targeted therapies, where to start?

Clinical trials

Metastatic disease

- EA6134 "A randomized phase II trial of dabrafenib + trametinib followed by ipilimumab and Nivolumab art progression vs ipilimumab + Nivolumab followed by dabrafenib + trametinb at progression in patients with advanced BRAF V600e mutant melanoma"
- EA131 "Molecular Analysis for Therapy Choice (MATCH)"
- S1320 "A randomized, phase II trial of intermittent vs continuous dosing of dabrafenib and trametinib in BRAFV600e/k mutant melanoma"
- OSU 13124 "a phase 1 expansion cohort evaluating the selective inhibitor of nuclear export (SINE) KPT-330 in patients with unresectable melanoma."
- OSU 17090 "a phase II study of ibrutinib in refractory distant metastatic cutaneous melanoma: correlation of biomarkers with response and resistance.

 Wexner Medical Center

Case 2

34 y/o female presented with a bleeding mole on her arm.

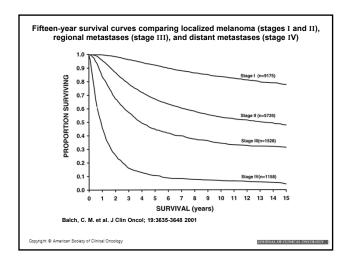
- *Biopsy*: nodular melanoma, 4.1 mm deep, with ulceration, mitotic rate 15/10 HPF
- Wide excision: no residual tumor
- Sentinel Node: positive for 2/2 LN, with extracapsular extension in 1 LN
- Axillary LN dissection: 0/20 LN

Case 2

What is the next step?

Prognostic indicators

- Thickness (Breslow depth)
- Nodal status
- Ulceration
- Satellite lesions
- In transit lesions


Case 1

Our 34 y/o female has multiple poor prognostic indicators:

■ Depth > 1.0 mm

■ Lymph nodes positive (macroscopic)

Ulceration presentMitotic rate high

Adjuvant therapy for high risk patients

What therapies are available? How do we identify patients for treatment?

Systemic Therapy: Adjuvant

- FDA approved biologic agents
 - IFN (1 year)
 - Pegylated IFN (5 years)
 - Ipilimumab (10 mg/kg, 3 year)
- Data available, not yet FDA approved
 - Nivolumab (1 year)
- Data pending from large clinical trials
 - Ipilimumab (3 mg/kg, 1 year)
 - Pembrolizumab (200 mg, fixed dosing)

Adjuvant radiation

- Adjuvant radiation
 - Dose- 30 Gy in 6 Gy fractions 2 times/week
 - Improvement in local, regional and locoregional disease control
 - No impact on OS or RFS

Adjuvant therapy with Interferon Alfa-2b (E1684)

FDA approved

■ IFN-alpha 2b for adjuvant treatment of melanoma patients with thick primary tumors (> 4mm) or resected nodal disease

Kirkwood et al, JCO 1996;14:7

Adjuvant therapy with Interferon Alfa-2b (E1684)

- Patient population
 - Breslows depth >4mm
 - LN+ after ELND
 - clinical LN+ with synchronous primary
 - regional LN recurrence after surgery for primary

Kirkwood et al, JCO 1996;14:7

Adjuvant therapy with Interferon Alfa-2b (E1684)

Treatment

- *high-dose IFNa-2b*: 20 MU/m² IV, 5 days per week for 4 weeks (induction phase) followed by 10 MU/m² SC TIW for 48 weeks (maintenance)
- observation

Adjuvant therapy with Interferon Alfa-2b (E1684)

	$IFN\alpha-2b$	Observation
median DFS	1.7 yr	1.0 yr
OS	3.8 vr	2.8 vr

* benefit greatest in LN+ patients

Cochrane meta-analysis of IFN alpha adj trials

Outcome measure HR	RFS 0.83 (0.78 – 0.87) 10,345 subjects (17 trials)	OS 0.91 (0.85-0.97) 9927 subjects (15 trials)
Risk reduction	17%	9%
NNT	16	33

RFS relapse free survival, OS overall survival, HR hazard ration, NNT number needed to treat to prevent one event

Mocellin et al, 2013

Adjuvant therapy with Interferon Alfa-2b (E1684)

TOXICITIES:

constitutional myelosuppression hepatotoxocity neurologic

- * 67% of all patients had severe (grade 3) toxicity at some point during treatment
- * Supportive care is necessary

Adjuvant Ipilimumab

Ipilimumab (10 mg/kg):

- Stage III melanoma
- Reduced risk of relapse (HR 0.76)
- Improved OS (HR 0.72)
- 5 year recurrence-free survival of 40.8% (placebo 30.3%)

Toxicities

■ Immune related toxicities remain high

Eggemont, et al, Lancet Oncol 2016

Adjuvant Ipilimumab (10 mg/kg)

Ipilimumab Placebo

Events/patients 234/475 294/476

HR (95% CI) 0.75 (0.64 – 0.90)

p value 0.0013

1 yr RFS 63.5% 56.1%

2 yr RFS 51.5% 43.8%

3 yr RFS 46.5% 34.8%

Adjuvant nivolumab

- Randomized, double blinded, phase 3 trial
- N=906
- Stage IIIB, IIIC, or IV NED from surgical resection
- Nivolumab 3 mg/kg every 2 weeks x 1 year vs Ipilimumab 10 mg/kg every 3 weeks for 4 doses, then every 12 weeks for 1 year

Weber et al, NEJM 2017

Adjuvant nivolumab

Nivolumab vs Ipilimumab

- Relapse free survival: HR 0.65 (97.56% CI, 0.51 0.83) p< 0.001
 - PDL1 < 5% HR 0.71 (95% CI, 0.56 0.91)
 - PDL1 > 5% HR 0.50 (95% CI, 0.32 0.78)

Weber et al, NEJM

Adjuvant Nivolumab

Nivoulmab vs Ipilimumab

Recurrence free survival:

- Stage IIIB or IIIC Hazard ratio 0.64 (95% CI, 0.52 0.82)
- Stage IV Hazard ratio 0.70 (95% CI, 0.45 1.10)

Weber et al, NEIM 2017

Adjuvant ipi vs nivo: treatment related adverse events

Ipilimumab (10 mg/kg)

- Grade 3 or 4 45.9%
- Treatment related AE leading to discontinuation 30%

AE > 2%

- Diarrhea (9.5%)
- Increase ALT (5.7%)
- Increase AST (4.2%)
- Rash (3.1%)
- Hypophysitis (2.4%)
- Maculopapular rash (2.0%)

Nivolumab (3 mg/kg)

- Grade 3 or 4 14.4%
- Treatment related AE leading to discontinuation 4.6%

AE >2% (none)

- Diarrhea (1.5%)
- Increase ALT (1.1%)
- Increase AST (0.4%)
- Rash (1.1%)

Weber et al, NEJM 2017

Adjuvant BRAF inhibitors

Double blind, placebo-controlled, randomized phase 3 trial

- Eligibility:
 - Stage III
 - BRAF V600E or V600K mutations
- 2 arms
 - Dabrafenib (150 mg po bid) + trametinib (2 mg po qd) (n=438)
 - Placebo (n = 432)

Long et al, NEJM 2017

Dabrafenib + Trametinib vs placebo

- Relapse free survival
 - HR for relapse 0.47 (95% CI, 0.39 0.58)
- Overall survival
 - HR for death 0.57 (95% CI, 0.42 0.79)

Long et al,

Dabrafenib + Trametinib vs placebo

- Combination therapy was favored in all subgroups
 - Male/female
 - Age <65/>65
 - Disease stage: IIIa, IIIb, IIIc
 - LN involvement: micrometastasis, macrometastasis
 - Ulceration present/absent
 - Number of nodal mets

Long et al, NEJM 201

Dabrafenib + Trametinib vs placebo

AE (>20%)

()			
Combinati	on therapy	Placebo	
Any grade	Grade 3-4	Any Grade	Grade 3 - 4
Pyrexia	none	Fatigue	nne
Fatigue		Nausea	
Nausea		Headache	
Headache			
Diarrhea			
Vomiting			
Rash			Long et al, NEJM 2017

Case 2

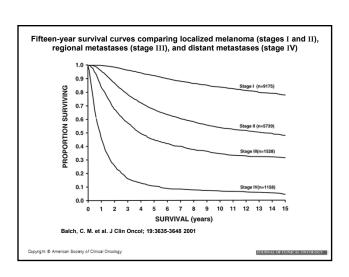
34 y/0 female presented with a bleeding mole on her arm

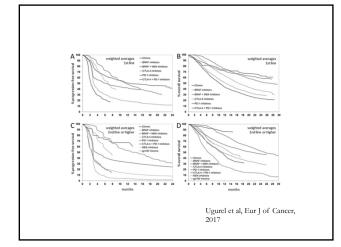
- *Biopsy*: nodular melanoma, 4.1 mm deep, with ulceration, mitotic rate 15/10 HPF
- Wide excision: no residual tumor
- Sentinel Node: positive for 2/2 LN
- Axillary LN dissection: 0/20 LN

What adjuvant therapy options are available?

Adjuvant systemic therapy

FDA approved


- Interferon
- Pegylated interferon
- Ipilimumab


Data just released

- Nivolumab
- Dabrafenib/Trametinib

Data pending

- IFN vs LD Ipi vs HD Ipi for 1 year
- Physician choice vs pembrolizumab for 2 yr

Improvements in outcomes have been significant:

- but there are many who still do not respond
- many develop resistance
- costs to the health care system are high

Further research needs to continue.

Thank you!

- to all the patients who participated in the clinical trials
- to all the researchers who contributed their ideas
- to all the funding agencies that made these advancements possible