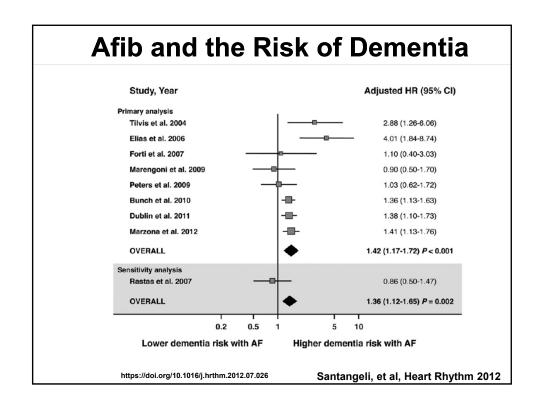
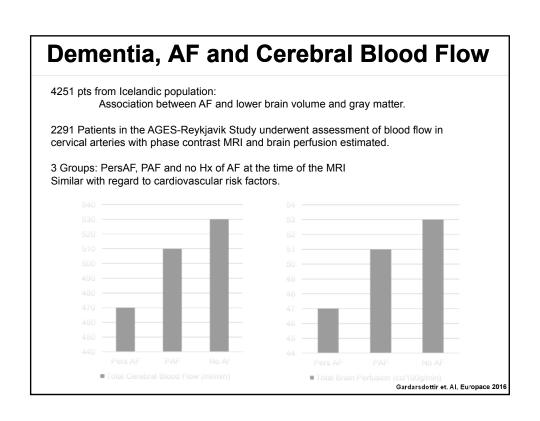
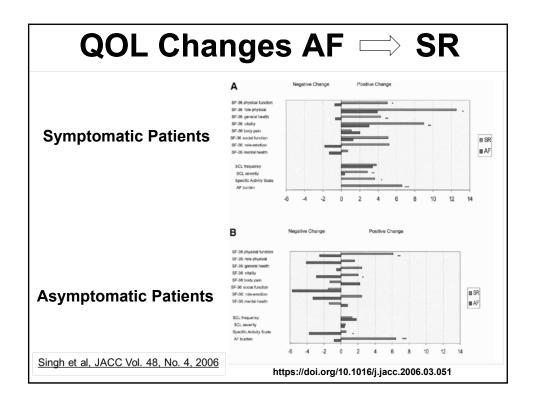
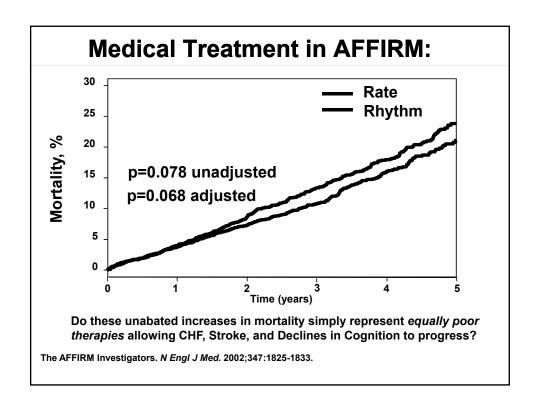

To Ablate or Not to Ablate: Current Management of Atrial Fibrillation

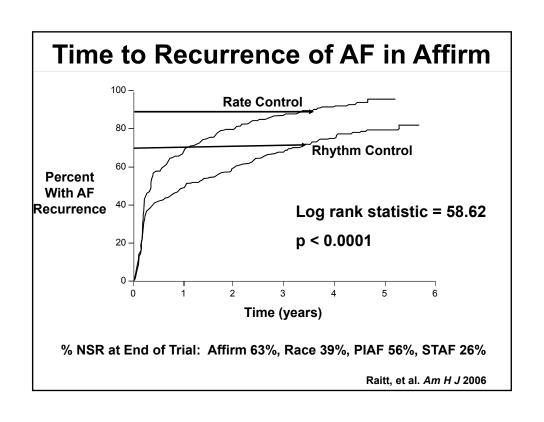

John Hummel, MD
Director of Electrophysiology Research
Professor – Clinical
Department of Internal Medicine
Division of Cardiovascular Medicine
The Ohio State University Wexner Medical Center


AF: Growing Health Problem


- Projected that the number of persons with AF in the U.S. will exceed 10 million by the year 2050
- Atrial fibrillation is a well established risk factor for:
 - Stroke
 - Congestive heart failure
 - Premature death

	Morbidit			
N =	= 3983 male air crew rec	ruits obse	rved continuo	ously for 44 years
	Endpoint	Cohort (n)	After AF (n)	Relative risk (95% CI)
	Total mortality	1603	136	1.31 (1.08–1.59)
	CV mortality	662	92	1.41 (1.11–1.80)
	Stroke mortality	83	15	2.48 (1.35–4.57)
	Nonstroke CV mortality	579	77	1.37 (1.05–1.78)
	Non-CV mortality	941	44	1.10 (0.80–1.53)
	Stroke	371	32	2.07 (1.43–3.01)
	Congestive heart failure	258	35	2.98 (2.09-4.26)
	Myocardial Infarction	590	19	1.02 (0.64-1.54)





AFFIRM Trial: Rate vs Rhythm Control Management Strategy Trial

- Design
 - 5-year, randomized, rate control vs. AARx
 - Primary endpoint: overall mortality
- Patient population
 - 4060 patients with AF and risk factors for stroke
 - Minimal symptoms
 - Mean Age = 69 yo
 - Hx of hypertension: 70.8%
 - CAD: 38.2%
 - Enlarged LA: 64.7%
 - Depressed EF: 26.0%

The AFFIRM Investigators. N Engl J Med. 2002;347:1825-1833.

Risk of Death in Affirm: Is Sinus Rhythm the Goal?

AFFIRM: Selected time-dependent covariates associated with survival

Covariate	P	Hazard ratio*	99% CI
Sinus rhythm	<0.0001	0.53	0.39-0.72
Warfarin	<0.0001	0.50	0.37-0.69
Digoxin	0.0007	1.42	1.09-1.86
Antiarrhythmic	0.0005	1.49	1.11-2.01

*HR <1.00: Decreased risk of death, HR >1.00: Increased risk of death

AFFIRM Investigators. Circulation. 2004;109:1509-13.

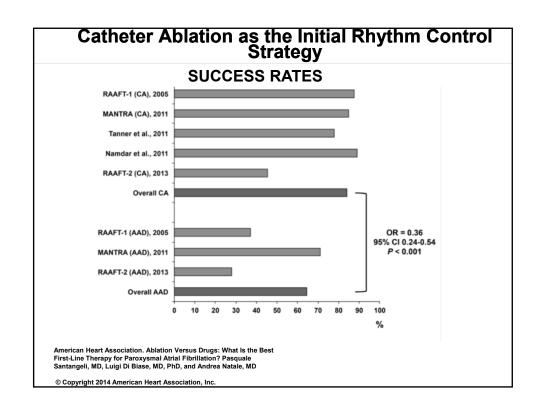
AF Wreaks Havoc in CHF

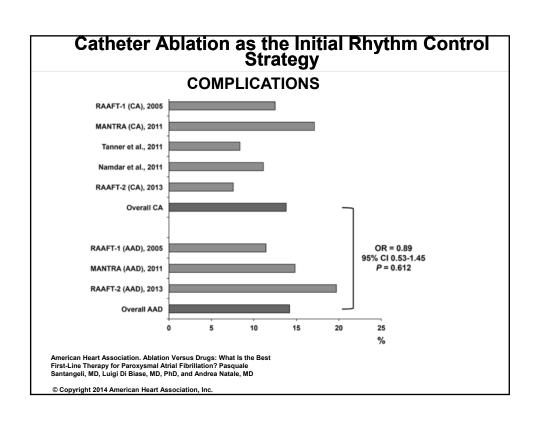
- AF in HF patients increases the 3year risk of:
 - mortality (hazard ratio 1.13)
 - all-cause <u>readmission</u> (HR, 1.15)
 - HF (HR, 1.22)
 - stroke (HR, 1.57).
- New-onset AF in CHF pts convey a greater increased risk
- The adverse impact of AF on mortality in HF greatest in mild-tomoderate HF.

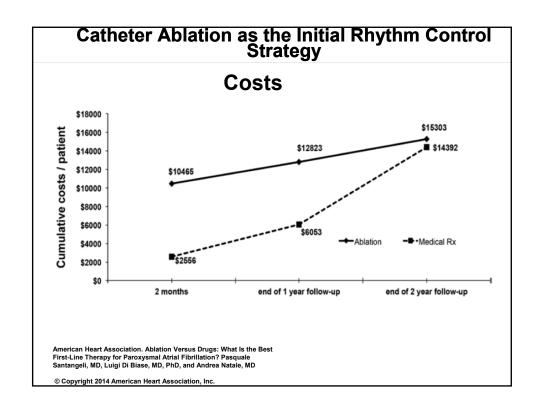
AF Status	Overall (N=24 175)		
Death from any cause, adjusted* hazard ra	atio (95% CI)		
No AF	Reference		
Preexisting AF	1.13 (1.07 to 1.20)		
Incident AF	1.67 (1.52 to 1.84)		
Hospitalization for heart failure, adjusted* I	hazard ratio (95% CI)		
No AF	Reference		
Preexisting AF	1.22 (1.15 to 1.29)		
Incident AF	2.00 (1.83 to 2.18)		
Hospitalization for any cause, adjusted* ha	zard ratio (95% CI)		
No AF	Reference		
Preexisting AF	1.15 (1.11 to 1.19)		
Incident AF	1.45 (1.37 to 1.54)		
Ischemic stroke, adjusted [†] hazard ratio (95	5% CI)		
No AF	Reference		
Preexisting AF	1.57 (1.34 to 1.83)		
Incident AF	2.47 (1.97 to 3.09)		

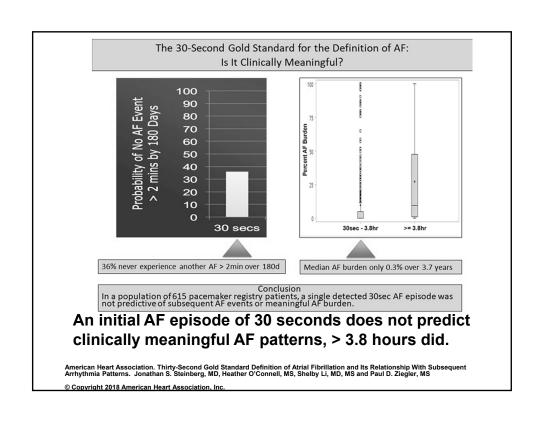
If NSR is Beneficial for Most People, it Should be Easy to See In the CHF Population

McManus et. Al, JAHA 2013

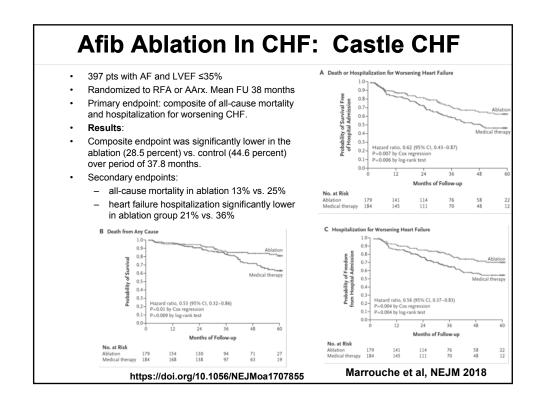

AFCHF


- 1376 pts. with LVEF ≤ 35%, symptomatic CHF, and Hx/o AF
- 682 in the rhythm-control group, 694 in the rate-control
- Primary Outcome: Death from CV causes
- Amiodarone 82% of rhythm control medication
- ~ 70% of patients in NSR at 2 years
- No Difference In:
 - Death from any cause
 - Stroke
 - Heart Failure Hospitalization
 - Composite outcome


Roy et. Al, NEJM 2008


COMET: Effect of Amiodarone on Allcause Mortality N = 3029 with chronic HF randomized to carvedilol or metoprolol Median follow-up 58 months NYHA II 95% Cl p value Relative 95% CI Amio vs 1.60 1.22, 2.11 0.0008 No amio Amio vs 1.58 1.30, 1.92 <0.0001 No amio Amiodarone: 58.9% Amiodarone: 38.7% Percentage with endpoint (%) No Amio: No Amio: 26.2% Percentage with endpoint (%) 40 5 20 20 Time (years) Time (years) COMET = Carvedilol or Metoprolol European Trial https://doi.org/10.1016/j.cardfail.2007.02.009

Torp-Pedersen C et al. J Card Failure, 2007:13:340-5



Study	Publication Year	Sample Size	Catheter Ablation Arm (n)	Comparator Arm (n)	Follow-up (months)	Primary Endpoint	Results
PABA-CHF%	2008	81	PVI (41)	AV node ablation with biventricular pacing (40)	6	Composite of ejection fraction, 6-minute walk distance and MLWHF score	Catheter ablation was superior to AV nodal ablation and biventricular pacing
MacDonald et al., 2001 ²¹	2011	41	PVI ± linear ablations ± CFAE ablation (22)	Rate control (19)	6	Cardiac MRI ejection fraction	No significant difference between groups
ARC-HF%	2013	52	PVI ± linear ablations ± CFAE ablation (26)	Rate control (26)	12	Peak VO ₂	Improvement in peak VO ₂ in the catheter ablation group compared with rate control
CAMTAF ²⁷	2014	50	PVI ± linear ablations ± CFAE ablation (26)	Rate control (24)	12	Left ventricular ejection fraction at 6 months	Improvement in left ventricular ejection fraction at 6 months in catheter ablation group
AATAC ²⁸	2016	203	PVI ± posterior wall isolation ± CFAE ablation (102)	Amiodarone (101)	36	Freedom from AF	Significant improvement in freedom from AF in the catheter ablation group
CAMERA- MRI ²⁹	2017	68	PVI + posterior wall isolation (34)	Rate control (34)	6	Left ventricular ejection fraction	Significant improvement in ejection fraction in catheter ablation group
CASTLE-AF ³⁰	2018	363	PVI ± linear ablations ± CFAE ablation (179)	Medical rate or rhythm control (184)	60	Death or heart failure hospitalisation	Significant improvement in composite endpoint of death and heart failure hospitalisation in catheter ablation group
consumption.							ation; VO ₂ = maximum rate of oxygen d no benefit

Relative Risk of Ablation vs. Medication

AF Ablation

- Stroke
- Phrenic Nerve **Paralysis**
- Vascular Complication
- Esophageal Injury
 Headache
- Valve Injury
- Chest Pain

Medication

- Life threatening arrhythmia
- CHF
- Liver toxicity
- Thyroid toxicity
- Fatigue

Catheter ABlation vs ANtiarrhythmic Drug Therapy in Atrial Fibrillation - CABANA

- Description:
- Goal: Compare the safety and efficacy of catheter ablation with drug therapy for treatment of new-onset or untreated atrial fibrillation (AF).
- Study Design
- Pts randomized in a 1:1 fashion to catheter ablation (n = 1,108) or drug therapy (n = 1,096).
- Duration of follow-up: 5 years
- Mean patient age: 67.5 years
- Percentage female: 37%
- · Inclusion criteria:

Presented by Dr. D.Packer at HRS 2018

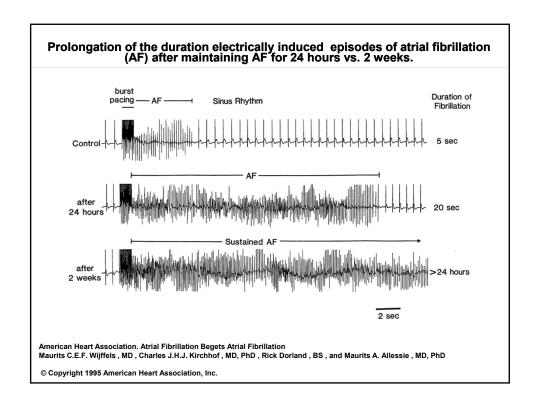
Catheter ABlation vs ANtiarrhythmic Drug Therapy in Atrial Fibrillation - CABANA

- Study Design
- Paroxysmal, persistent, or longstanding persistent AF patients who warrant therapy
- ≥65 years of age
- <65 years of age with ≥1 cerebrovascular accident (CVA)/cardiovascular (CV) risk factor
- Eligible for ablation
- On ≥2 rhythm or rate control drugs

Other Salient Features/Characteristics:

- Cardiomyopathy: 9%
- Chronic heart failure: 15%
- Prior CVA/transient ischemic attack (TIA): 10%
- Type of AF: paroxysmal: 43%, persistent 47%
- Prior hospitalization for AF: 39%
- Crossover:
 - ablation to drug: 9.2%drug to ablation: 27.5%

ITT Outcomes

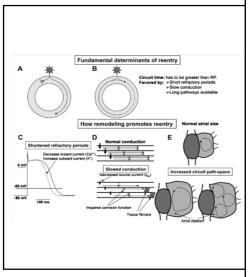

- The primary outcome [death, disabling stroke, serious bleeding, or cardiac arrest] at 5 years:
 - ablation = 8%
 - drug therapy = 9.2%, p = 0.3
- Death: 5% vs. 6% for ablation vs. drug therapy, p = 0.38
- Serious stroke: 0.3% vs. 0.6% for ablation vs. drug therapy, p = 0.19
- Death or CV hospitalization:
 - √ 51.7% vs. 58.1% for ablation vs. drug therapy, HR 0.83, 95% CI 0.74-0.93, p = 0.002

Outcomes Based on Treatment Received

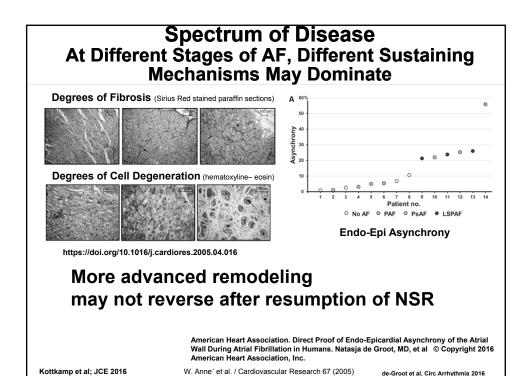
- Primary endpoint
 - Ablation=7%
 - Drug Therapy=10.9% p=0.006
- Death: 4.4% vs. 7.5% for ablation vs. drug therapy: p = 0.005
- Death or CV hospitalization: 41.2% vs. 74.9% for ablation vs. drug therapy: p = 0.002

Cabana Conclusions

- Catheter ablation did not result in reduction in primary endpoint over drug therapy
- Ablation significantly reduced combined mortality or hospitalization by 17% over drug therapy
- There was a 47% reduction in AF with ablation compared to drug therapy
- There was a 40% reduction in mortality and a 33% reduction in the primary endpoint with ablation in on-treatment analysis.



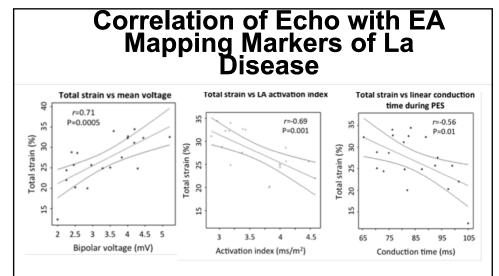
AF begets **AF**


AF itself causes arrhythmogenic milieu that further promotes and maintains AF:

- Atrial electrical remodeling
 - ◆Atrial ERP, ↑spatial heterogeneity of ERP, ↓normal ERP rate adaptation
 - Slow conduction

 Modulation of
 - Modulation of Na channels, gap junctions (connexins), altered tissue structure
- Structural remodeling
 - Macro-atrial dilation
 - · Micro-atrial fibrosis

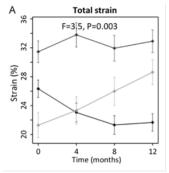
https://doi.org/10.1016/j.pbiomolbio.2012.07.011

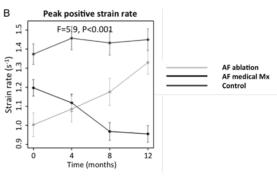

Does the Form of AF Management Affect LA Remodeling?

- With PAF:
 - risk of Persistent AF 15% at one year
 - risk of Persistent AF 25% at 5 years
- Conflicting data as to whether AF-associated remodeling reverses after effective ablation vs. medical management
- The progression or regression of atrial remodeling over a 12-month period with medical management or catheter ablation was assessed in 83 patients
- · Prospective, nonrandomized cohort analysis

Walters et al, Heart Rhythm, Vol 13, No 2, February 2016

Remodeling of LA With Different Forms of Management

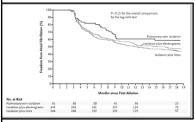

- 83 pts recruited into 3 groups:
 - PAF undergoing medical management (group 1,n = 38)
 - PAF undergoing ablation (group 2,n = 20)
 - Control pts without Hx of AF(group 3,n = 25).
- Two blinded, baseline assessments of:
 - BP,anthropometric measurements,
 - Digital ECG (with P wave duration and dispersion)
 - TTE assessment of myocardial strain (total and peak positive strain taken to be indirect markers of LA structural remodeling and of atrial myocardial fibrosis)
 - Sleep evaluation
- Ablation patients evaluated for LA voltage, LA activation times
- Repeat ECG and echocardiography at 4, 8, and 12 months.
- AF groups underwent ILR implant



- AF burden in Medication Group: 8% (3-53%)
- AF burden in Ablation Group: 0% (0-1%)
- The echo is a good measure of LA reserve and extent of remodeling

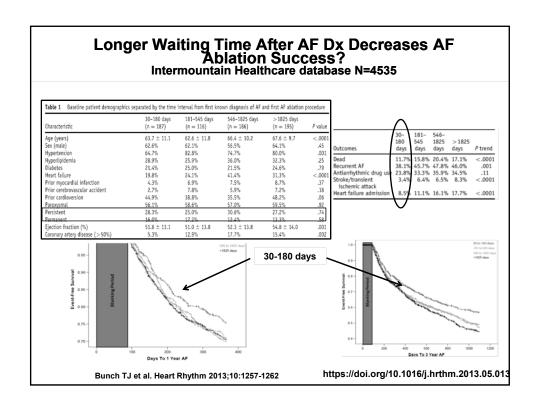
https://doi.org/10.1016/j.hrthm.2015.10.028

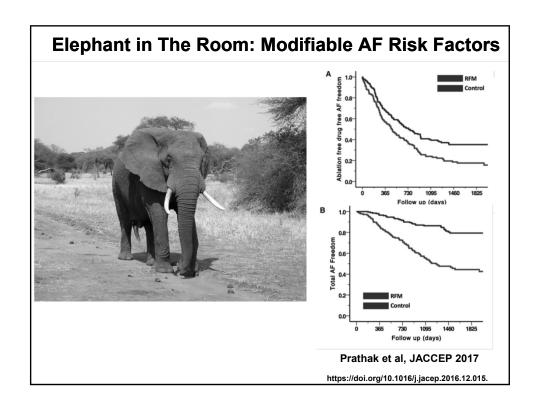
Effect of Ablation vs. Med Management of LA Remodeling



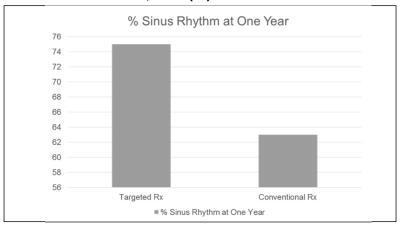
- AF Burden ≥ 10% predicted significant drop in strain (remodeling)
- P wave duration and dispersion significantly increased in medical management group , not ablation group
- Inclusion of co-morbidities in regression models did not attenuate between group differences based on presence of AF

https://doi.org/10.1016/j.hrthm.2015.10.028

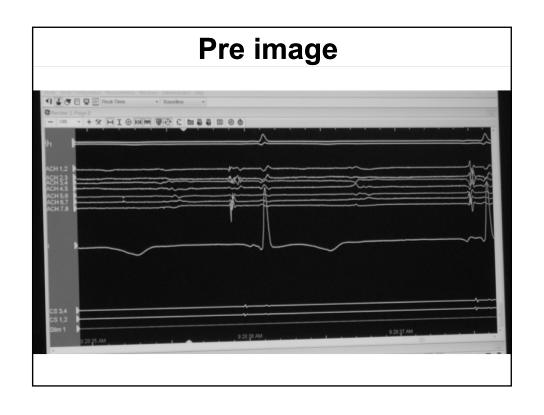

How long are we waiting? STAR AF II

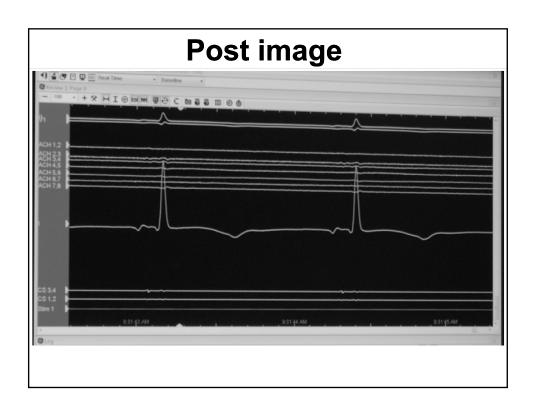

- 589 Persistent AF assigned to PVI, PVI+complex EGM, PVI+lines (roof, mitral valve isthmus) in a 1:4:4 ratio
 - · 48 centers in 12 countries
 - Failed >=1 AAD
 - Continued AAD use allowed
 - Enrolled between 2010-2012

Characteristic	Isolation Alone (N = 67)	Isolation plus Electrograms (N = 263)	Isolation plus Lines (N = 259)
Age — yr	58±10	60±9	61±9
Male sex — no. (%)	52 (78)	213 (81)	196 (76)
Ejection fraction — %	55±11	57±10	57±10
Left atrial diameter — mm	44±6	44±6	46±6
Time from first diagnosis of atrial fibrillation — yr	4.3±6.3	4.2±5.0	3.6±4.2
Burden of atrial fibrillation at baseline — hr/mo†	83±36	85±33	80±37
Constant atrial fibrillation for >6 mo — no. (%)	52 (78)	207 (79)	186 (72)
Medical history — no. (%)			
Hypertension	32 (48)	143 (54)	158 (61)
Diabetes	6 (9)	31 (12)	26 (10)
Coronary disease	2 (3)	21 (8)	29 (11)
Stroke or transient ischemic attack	6 (9)	14 (5)	19 (7)
Heart failure	3 (4)	10 (4)	15 (6)
CHADS ₂ score — no. (%)			
0	31 (46)	93 (35)	81 (31)
1	25 (37)	126 (48)	127 (49)
2	6 (9)	31 (12)	29 (11)
>2	5 (7)	10 (4)	19 (7)
Baseline CCS SAF score — no./total no. (%)			
0	2/63 (3)	12/248 (5)	14/243 (6)
1	14/63 (22)	55/248 (22)	53/243 (22)
2	19/63 (30)	79/248 (32)	70/243 (29)
3	24/63 (38)	86/248 (35)	89/243 (37)
4	4/63 (6)	16/248 (6)	17/243 (7)


Verma A et al. NEJM 2015; 372:1812-22

Patients with CHF and Afib randomized to rhythm control with and without (i) MRA, (ii) statins, (iii) ACE-I and/or ARB, and (iv) cardiac rehabilitation


Rienstra et al, EHJ 2018


Conclusions

- Atrial fibrillation carries risk of significant morbidity and mortality
- Risk Factor Modification is Critical
- Successful suppression (burden less than 10%) is likely safe and effective
- Progression of AF should be countered with early ablation as:
 - Progressive disease make the outcomes worse for PAF
 - Persistent AF has worse outcome
 - Early ablation confers better response

The ablation procedure

Video of Ablation Procedure

