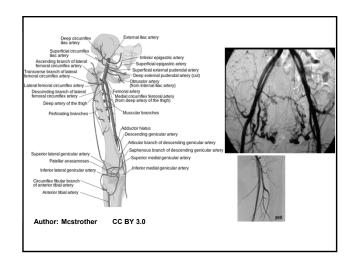
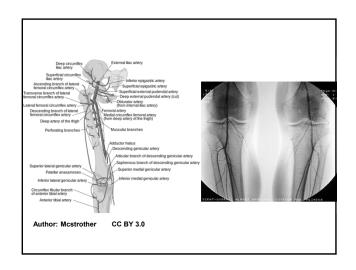
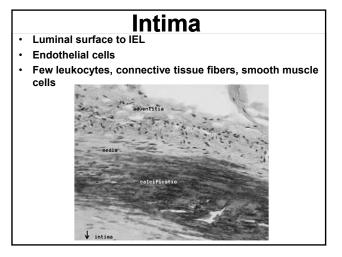
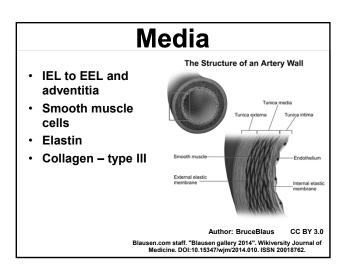
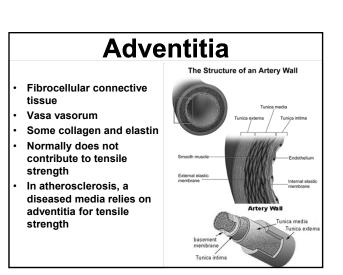
Peripheral Arterial Disease

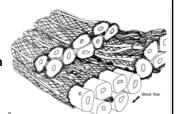

Michael R. Go, MD
Division of Vascular Diseases and Surgery
Department of Surgery
The Ohio State University Wexner Medical Center


Disclosures


None


Objectives


- Anatomy
- Pathophysiology
- Demographics
- Diagnosis
- Treatment


Elastic Arteries

- Prominent elastic fibers in proximal vessels
- · High compliance
- Recoil
- Interspersed with type I collagen bundles

Muscular Arteries

- Smaller distal vessels
- Less collagen and elastin, more smooth muscle cells
- Constrict and dilate more effectively

Vasa Vasorum

- Diffusion supports 0.5 mm or 30 musculoelastic bundles
- Vasa vasorum supply the rest

Atherosclerosis

- Most common cause of peripheral arterial disease
- Preferentially involves the internal carotid, infrarenal aorta, and superficial femoral arteries
- · Typically occurs at bifurcations

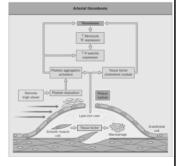
Pathology

- · Intimal thickening
- Fatty streaks
- · Fibrous plaques
- · Plaque complication

Intimal Thickening

- · Increased wall tensile stress
- Increased wall thickness
- Occurs at bifurcations and areas of redistribution of wall stress in fetuses
- No lipid accumulation
- Occurs in same places as plaque, but not necessarily a precursor

Fatty Streaks


- · Intimal accumulation of foam cells
- · Affect all ages
- Do not compromise lumen
- · Abnormal overlying endothelial cells
- · Occurs throughout vascular tree
- · Not necessarily a precursor of plaque

Fibrous Plaques

- · Earliest definitive atherosclerotic lesion
- · Appear by second decade
- · Subendothelial smooth muscle
- · Fibrous cap of connective tissue
- · Intact but fragile endothelium
- · Attenuated media

Plaque Complications

- Necrotic core of lipid, macrophages, and smooth muscle cells
- Calcification
- · Endothelial disruption
- Ulceration
- Hemorrhage
- Embolism

Pathophysiology

- Atherosclerosis may cause symptoms via stenosis or occlusion of axial vessels
- · Inadequate tissue perfusion

Risk Factors

- Tobbaco use
- Diabetes
- Hyperlipidemia
- Genetics
- Hypertension

Peripheral Arterial Disease Latin America (LMIC), 15.5 Sub-Saharan (LMIC), 14.2 Eastern Mediterranean (LMIC), 10.3 Western Pacific (HIC), 6.5 Americas (HIC), 4.5 • 200,000,000 people affected • 2/3 live in low income countries Rutherford: Vascular Surgery, 6th ed.

Peripheral Arterial Disease

- 8,500,000 people in the US
- · Affects 20% of people over age 80
- Asymptomatic
- Claudication
- · Critical limb ischemia
 - Rest pain
 - Ulceration

Rutherford: Vascular Surgery, 9th ed.

Claudication

- Pain in the large muscle groups distal to an arterial lesion after exercise
- · Cramping, heaviness, fatigue
- Occurs consistently after a certain distance of walking
- Reliably abates when patient stops
- The patient is asymptomatic at rest because there are adequate collaterals for perfusion without increased metabolic demand

Bloor K. Natural history of arteriosclerosis of the lower extremities. Ann R Coll Surg Engl 1961; 28: 36-51

- · Affects 5% of the population over 50
- 75% of claudicants will remain stable
- · 25% will deteriorate
 - 7 9% in first year
 - 2 3% per year after first year
- · 5% will progress to critical limb ischemia
- 2% will progress to major amputation

Claudication

•	90% ł	nave	con	comi	tant	CAD
					4 - 4*	

5 year overall amputation

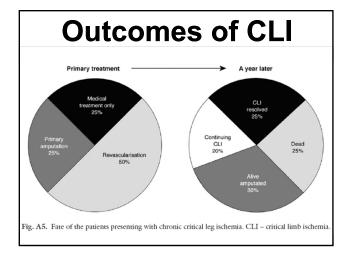
• 5 year incidence of symptomatic coronary artery disease 23%

5 year incidence of stroke5 year mortality20%

• 10 year mortality 50%

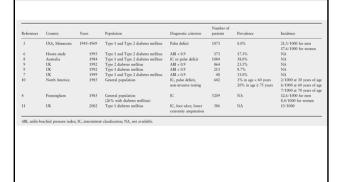
• 15 year mortality 70%

Critical Limb Ischemia


- · Ischemic rest pain
 - intense pain across distal foot and arch
 - burning, stabbing, constant
 - worsened with elevation
 - dependent rubor
- Ulceration
- · Gangrene
 - dry
 - wet

Critical Limb Ischemia

- 500 1000 / 1 million new cases annually
- 1 3% of PAD population


Diabetic Foot Problems

 Diabetic foot ulcers and amputations cost US health care providers over 10 billion dollars per year

Diabetic Foot Problems

- 24,000,000 diabetic patients in the US
- 3,500,000 people with DM and PAD in the US

Diabetes and PAD

Diabetic Foot Problems

- Lifetime risk of ulcers or gangrene is 15 -25%
- > 15% of patients with ulcers will end up with an amputation
- Every 30 seconds a leg is amputated somewhere in the world as a consequence of diabetes

Diabetic Foot Problems

- Highest incidence in ethnic minority groups
 - 2 4X higher rate of amputation compared to non-minority groups
 - Native Americans, Hispanics, African Americans
- A problem requiring intensive follow up and management is compounded by difficult access to care

Diabetic Foot Problems

- Neuropathy
- Deformity
- Trauma
- Ischemia
- Infection

Neuropathy

- Sensory nerves affected first
- Small diameter pain and temperature fibers are initially damaged
- Predisposes to pressure related trauma and minor skin Injuries

Neuropathy

- · Motor neuropathy is late
- Affects both long fibers innervating both intrinsic muscles of the foot and leg muscles

Neuropathy

- Atrophy of intrinsic foot muscles
- Preserved flexor muscle strength results in "clawed position"
- Abnormal pressure points emerge at tips of toes
- · Metatarsal heads relax

Neuropathy

- · Calluses form which later may ulcerate
- · Small muscles of the foot atrophy

Autonomic Neuropathy

- · Dry skin
- Loss of sweat and oil gland function
- · Dry skin predisposes to fissures
- · Calluses and fissures breakdown
- · Portals of entry for bacteria

Ischemia

- Neuropathy causes shunting of blood through AV connections in the microcirculation
- Results in decreased tissue perfusion even with normal axial vessels
- · Cutaneous oxygen saturation is decreased
- · Compounded with neuropathy, ulceration results

Ischemia

- Diabetes causes structural and functional changes in the capillary bed
- · Thickened basement membrane
- · Impaired migration of leukocytes
- · Impaired vasodilation response to injury
- · Blunted inflammatory response to injury

Infection

 Because of this blunted inflammatory response, diabetic patients lack a crucial component of the body's first line defense against pathogens and thus are more susceptible to foot infection

Peripheral Arterial Disease Differential

- Neurogenic claudication
 - spinal stenosis or nerve root compression
 - history of back pain
 - burning or shooting pain radiating down posterior leg
 - numbness or paresthesias
- Neuropathy
- Arthritis
- · Neuropathic ulceration

History

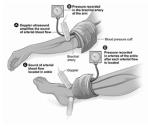
- · Coronary artery disease
 - MI
 - CHF
 - arrhythmia
 - recent cardiac evaluation
- DM
- Smoking
- Hypertension
- Hypercholesterolemia
- Family history of atherosclerotic disease
- Cerebrovascular disease
 - stroke
 - TIA
 - amaurosis

Physical Exam

- · Complete heart and lung exam
- Neurologic exam
 - carotid bruits
 - superficial temporal pulses
 - cranial nerves
 - motor
 - sensory

Vascular Exam

- · Complete bilateral pulse exam
 - Doppler
 - monophasic
 - multiphasic
 - 0, 1+, 2+, 3+, widened pulses
 - Bruits and thrills


Vascular Exam

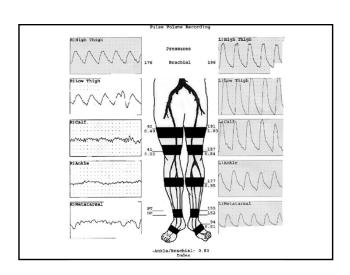
- Dependent rubor
- Shiny skin
- · Loss of hair
- Diminished nail growth
- Ulceration and gangrene

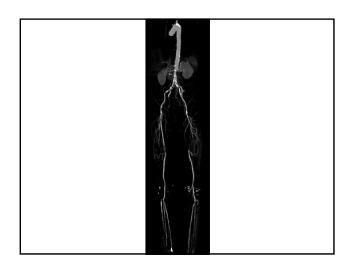
Vascular Lab Testing

- ABI
- Can be affected by vascular calcification or edema

ABI Claudication 0.6 0.3 Tissue loss 0.2

Exercise Testing

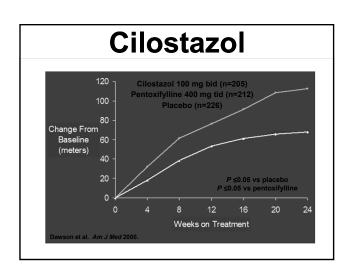

- Treadmill or calf raises decrease peripheral resistance
- · Flow increases based on Ohm's law
- If there is a proximal stenosis, flow increase is limited and pressure will drop


Vascular Lab Testing

- · Pulse volume recordings
 - normal

Rest pain

- blunted
- Doppler waveforms
 - multiphasic
 - monophasic
- Digital pressures
- · Not limited by vessel calcification
- · Complements pressure testing



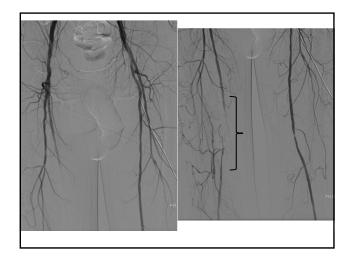
Angiography Diagnostic Therapeutic Complications nephrotoxicity contrast allergy arterial injury embolization hematoma pseudoaneurysm

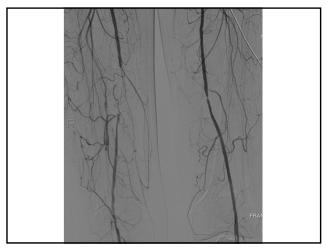
Treatment of Claudication

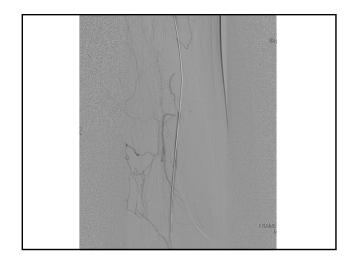
- · Risk factor modification
 - smoking cessation
 - hypertension
 - hyperlipidemia
 - diabetes
- Supervised exercise program
 - 30 minutes of cardiovascular exercise daily
 - 5 days per week

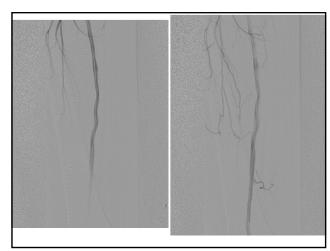
Cilostazol

- · 2 to 4 weeks prior to response
- 12 weeks of treatment are recommended to assess effectiveness
- Improvement was noted throughout the trial period (up to 24 weeks) and did not plateau by study's end
- Treatment must be continued to maintain increases in walking distance


Procedural Intervention for Claudication


- Procedural intervention for claudication is reserved for patients with lifestyle-limiting claudication and failure of medical therapy
- Often, this is related to single level, proximal disease
 - aortoiliac
 - femoral
 - ABI 0.6


Treatment of Rest Pain or Tissue Loss


- · Risk factor modification
- · Restoration of in-line vascular flow
- · Management of the wound
- Often, this is related to multi level or distal disease
 - popliteal
 - tibial
 - ABI 0.3

Endovascular Intervention

Angioplasty

1 year primary patency 50-60% (in optimal lesions)

Bare Metal Stenting

1 year primary patency 73-81% (in optimal lesions)

Laird JR et al. Circ Cardiovasc Interv. 2010. 3: 267-76.
Matsumura JS et al. J Vasc Surg. 2013. 58: 73-83.
Dake MD et al. Circ Cardiovasc Interv. 2011. 4: 495-504.

The Common Modality Of Failure:

Intimal Hyperplasia

Drug Elution Therapy

- Inhibition of SMC proliferation and migration
- · Decreased restenosis

Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery

5-Year Results of the Zilver PTX Randomized Trial

Michael D. Dake, MD; Gary M. Ansel, MD; Michael R. Jaff, DO; Takao Ohki, MD; Richard R. Saxon, MD; H. Bob Smouse, MD; Lindsay S. Machan, MD; Scott A. Snyder, PhD; Erin E. O'Leary, PhD; Anthony O. Ragheb, PhD; Thomas Zeller, MD; on behalf of the Zilver PTX. Investigators

IN.PACT SFA Trial Summary

Determine safety and efficacy of IN.PACT Admiral in treating femoropopliteal disease			
	andomized 2:1 -wide		
Clinical: Angiographic:	Rutherford 2-4 SFA and proximal popliteal artery Lesion length 4-18cm Occlusions s 10cm Vessel diameter 4-7mm		
Safety:	Composite 30-day device- and procedure- related death and 12-mo treatment limb amputation, and clinically-driven reintervention Primary patency (defined as PSVR ≤ 2.4 and		
	femoropoplite 331 subjects n 57 sites world Clinical: Angiographic: Safety:		

Tepe G et al. Circ. 2015. 131: 495-502.

IN.PACT SFA 1-year Results (@360d)							
	IN.PACT Admiral	Standard PTA	P-value	Delta			
Primary patency	82.2%	52.4%	< 0.001	26.2%			
Freedom from TLR	97 5%	79 3%	<0.001	18 2%			

	IN.PACT Admiral	Standard PTA	P-value	Delta			
Composite safety	87.4%	69.8%	<0.001	17.6%			
Primary patency	78.9%	50.1%	<0.001	28.8%			
Freedom from TLR	91.0%	72.2%	<0.001	18.8%			

Risk of Death Following Application of Paclitaxel-Coated Balloons and Stents in the Femoropopliteal Artery of the Leg: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Konstantinos Katsanos, MD, PhD, MSc, EBIR; Stavros Spiliopoulos, MD, PhD; Panagiotis Kitrou, MD, PhD; Miltiadis Krokidis, MD, PhD; Dimitrios Kamabatidis, MD, PhD

Conclusions—There is increased risk of death following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the lower limbs. Further investigations are urgently warranted.

Clinical Trial Registration—URL: www.xrd.yorl.ac.uk/PROSPERO, Unique Identifier: CRD42018099447. [J Am Heart Assoc. 2018/7x011245. DOI: 10.1101/JAHA.118.011245.

Percutaneous Treatment Results Are Better...

- Proximal vessels (aorta > iliacs > SFA > tibials)
- · Short lesions
- · Focal lesions
- · Stenoses > occlusions

Percutaneous Treatments Are Worse...

- · Distal or smaller vessels
- Long lesions
- Diffuse lesions
- Occlusions
- · At joints or bifurcations
 - common femoral
 - profunda
 - popliteal

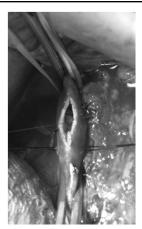
Percutaneous Treatments

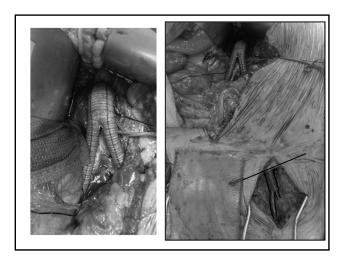
- · Local anesthesia
- Fewer cardiopulmonary complications
- Outpatient procedure
- Radiation
- Nephrotoxicity
- Arterial injury
- Embolization
- Pseudoaneurysm
- Rarely as durable as bypass or open repair

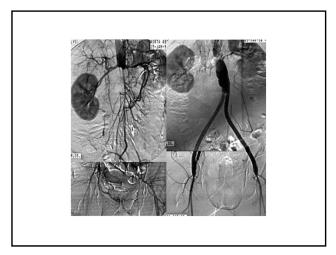
Surgery

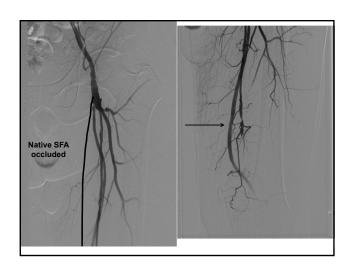
- Procedural intervention for claudication is reserved for patients with lifestyle-limiting claudication and failure of medical therapy
- Rest pain
- Tissue loss

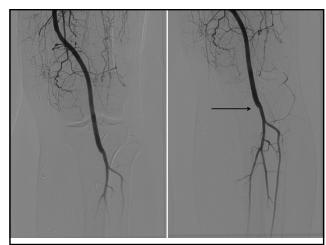
Contraindications to Surgery

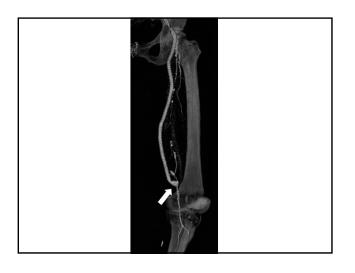

- · Prohibitive medical comorbidities
 - coronary
 - pulmonary
- Unreconstructible vessels
- Nonambulatory status (consider primary amputation)
- Extensive tissue loss (consider primary amputation)


Level of Disease Determines Options


- Aortoiliac
 - aortoiliac endarterectomy
 - aortofemoral bypass
 - axillary femoral bypass
- Femoropopliteal
 - femoral endarterectomy
 - femoropopliteal bypass
- Tibial
 - femorotibial bypass
 - popliteal tibial or pedal bypass







Bypass Conduit

- Greater saphenous vein
- · Other autogenous vein
 - lesser saphenous
 - cephalic
 - basilic
- Prosthetic (polyester or Polytetrafluoroethylene)

Amputation

- Nonambulatory patients with CLI
- · Patients with extensive tissue loss
- · Unreconstructible patients
 - foot sepsis
 - intractable pain

Amputation

- The more distal the amputation, the better the functional outcome
- The more proximal the amputation, the better the likelihood of healing
- Feel for a pulse one level above the proposed amputation
- The skin should be warm and pink at the level of the proposed amputation
- A pressure of 50 mmHg at the level of the proposed amputation predicts healing

Peripheral Arterial Disease and Limb Preservation

Said Atway, DPM, FACFAS
Assistant Professor - Clinical
Department of Orthopaedics
The Ohio State University Wexner Medical Center

Health-Related Quality of Life of Patients With Diabetes and Foot Ulcers

Andrew R. Evans, B.S.; Michael S. Pinzur, M.D. Maywood, IL

ABSTRACT

Thirty-four patients with diabetes who attended a university diabetic foot clinic for treatment of a foot uncer completed the American Academy of Orthopaedic Surgeons Musculoskeletal Outcomes Measure. The purpose of the study was to measure the impact of foot ulcers in patients with diabetes on the physical, mental, at least a high school education. Only six were employed at the time. Nineteen were retired or diabeted due to poor health. Sixteen were obese, 10 were considered overweight, and eight had a BMI within the acceptable range.

individuals will develop a foot ulcer during the course of their lifetime, with foot ulcer progressing to over 50,000 lower extremity amputations yearly in the United States. ^{1,9-1} Approximately 7% of individuals with diabetes and peripheral neuropathy will develop their first ulcer each year. Foot ulcers in patients with diabetes produce substantial patient morbidity and consume a great deal of health system resources. ^{4,6-1} In the Medicare population alone, the aggregate spending for treatment of lower extremity foot ulcers in patients with diabetes was \$1.5 billion in 1995, 74% of which was for inpatient therapy. ^{4,6,10}

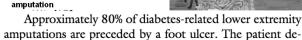
Foot Infection

- Any infra-malleolar infection in a person with diabetes
- Common and costly problem

 DM related amputation cost 3B per
 - year
 Diabetes Care 2003
- Most common reason for a diabetic to be admitted National Hospital Discharge Data
- Most common non-traumatic cause of
- amputation

 60% of LEA

 Most common cause of nontraumatic lower extremity amputation
 - · Lancet 2005



Foot Infection

- Any infra-malleolar infection in a person with diabetes
- Common and costly problem

 DM related amputation cost 3B per year
 • Diabetes Care 2003
- Most common reason for a diabetic to be admitted

 - National Hospital Discharge Data
- Most common non-traumatic cause of amputation

· Lancet 2005

Importance of Diabetic Wound care

- Diabetic foot ulcers present >4 weeks have a 5 fold higher risk of infection
- · Infection in a foot ulcer increases the risk for hospitalization 55.7 times and risk for amputation 155 times
- 5 year mortality after limb amputation is 68%
 - · NIH publication 1995

Importance of Diabetic **Wound care**

Diabetic foot ulcers present >4 weeks have a 5 fold higher risk of infection

- Evidence. Percentage reduction in wound size is an early predictor of treatment outcome. 35,96-99 Wound area reduction of 10% to 15% per week or ≥50% area reduction in 4 weeks results in increased likelihood of healing with decreased complications of infection and amputation.
- b'year mortality after limb " ' amputation is 68%
 - NIH publication 1995

Consensus Development Conference on Diabetic Foot Wound Care

7-8 April 1999, Boston, Massachusetts

AMERICAN DIABETES ASSOCIATION

QUESTION 1: What is the value of treating a diabetic foot wound?

mong people with diabetes, 15% will
the U.S. are moving the health care system
copertures a foot uteer in their lifetiams foot uteers are major peotlector by high size to consider the control of future lower-extremity amputation in
putients with diabetes. Indeed, about

The term "diabetic foot wound" refers to a
variety of pathological conditions. Uteers,
to wound becoming more cost-effective most considerable and the couple the full thickness of the dermis(3).

Certain infections of the foot, e.g., cellulinis

Consensus Development Conference on Diabetic Foot Wound Care

7–8 April 1999, Boston, Massachusetts

AMERICAN DIABETES ASSOCIATION

QUESTION 1: What is the value of treating a diabetic foot wound?

To improve function and quality of life.

mong people with diabetes, 15% will

two separations of the U.S. are moving the health care system

experience a foot ulcer in their lifetoward becoming more cost-effective; this
life of luture lower-externity amputation in most cost-effective methods for treating and
patients with diabetes. Indeed, about

preventing foot wounds.

Certain infections of the foot, e.g., cellulitis

cost of the U.S. are moving the health care system

the most frequent and characteristic type of
the confirmation of the four foot, and piecely the
total confirmation of the foot, e.g., cellulitis

cost of the Cost of the Cost of the
Certain infections of the foot, e.g., cellulitis

cost of the Cost of the Cost of the
Certain infections of the foot, e.g., cellulitis

cost of the Cost of the
Certain infections of the foot, e.g., cellulitis

Reviews/Commentaries/Position Statements

Consensus Development Conference on Diabetic Foot Wound Care

7–8 April 1999, Boston, Massachusetts

AMBICAN DIMETIS ASSOCIATION

QUESTION 1: What is the value of treating a diabetic feet weans?

To improve Junction and quality of life.
To control injection. Junction and provide the provide sept weans?
To control injection. Junction and provide sept to the U.S. are moving the health care system toward becoming more cost-effective, this limit feet were are ampty prefactor highlights the printify for determining the provide septiment for the treatment of feature lower-extremity amputation in most cost-effective entheds for treating and potential with diabetic fideed, about previning foot worms.

Certain infections of the foot, e.g., claims

Reviews/Commentaries/Position Statements CONSINSUS DEVELOPMENT CONFERENCE REPORT

Consensus Development Conference on Diabetic Foot Wound Care

7–8 April 1999, Boston, Massachusetts

AMERICAN DIABETES ASSOCIATION

QUESTION 1: What is the value of treating a diabetic foot wound?

To improve function and quality of life.

1To control infection. lesses to a

mong people with diabetes, 15% will the U.S. are moving the health care system

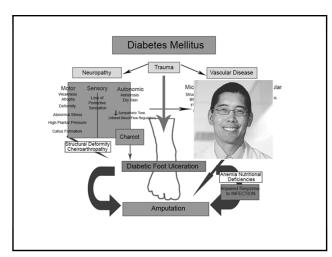
A mong people with diabetes, 15% will the U.S. are moving the health care system

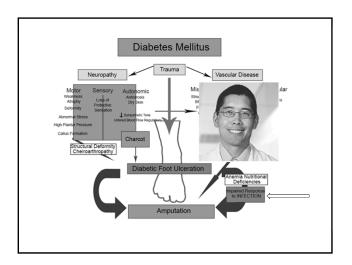
To maintain health statuss. x of the control infection. The control infection is consistent with the U.S. are moving the health care system. To maintain health statuss. x of the control infection is consistent with the U.S. are moving the health care system. To maintain health statuss. x of the clients of the control infection. To control inf

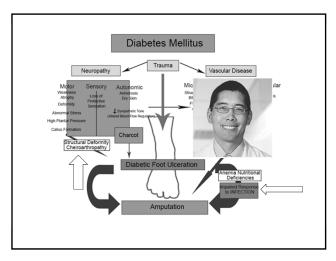
Consensus Development Conference on Diabetic Foot Wound Care

7–8 April 1999, Boston, Massachusetts

American Diabetis Association


A mong people with diabetes, 19% will experience a fost ulcer in their life-lating, foot ulcers are a mayer predictor. In the Conference of future foot ulcers are amper predictor of future foot ulcers are amper predictor of future foot venerate many aprutation in put preventing foot wounds preventing foot wounds.


A mong people with diabetes, 19% will be U.S. are moving the beath care system. To maintain health status, of the foot prevent amputation in put preventing foot wounds.


A mong people with diabetes, 19% will be used to be under the property for identifying the highlights the priority for identifying the highlights the pr

Clinical Practice Guidelines

- Management of etiologic factors

 - Adequate perfusion
 PAD (Twice as common in DM) Gregg et al 2004

Rarely lead to ulcer directly Contributes to 50% of ulcers Diabetes Metab 2008

- Debridement
 - Sharp debridement of infection
- · Urgent for gas/necrotizing infection
- Infection Control
 - IDSA guidelines
- **Pressure Mitigation**
 - Offloading
 - Surgical
 - Nonsurgical
 - · Total contact cast

Consensus Development Conference on Diabetic Foot Wound Care

7–8 April 1999, Boston, Massachusetts

AMERICAN DIABETES ASSOCIATION

Debridement. Sharp debridement of devitalized tissue from the wound area at fre quent intervals has been shown neuropathic wounds more rapidly. Most people with diabetes, 15% will the U.S. are moving the her some a foot uder in their lifefoot uders are a major predictor of control of the noninfected neuropathic wounds can be debrided on an outpatient basis by a and forceps. The extent of debridement for non-limb-threatening wounds is contro-versial, with recommendations and protocols varying widely. There are little data to

Wound Repair And Regeneration

The role of surgical debridement in healing of diabetic foot ulcers

Elizabeth Lebrun, Marjana Tomic-Canic PhD, Robert S. Kirsner MD, PhD

First published: 14 September 2010 | https://doi.org/10.1111/j.1524-475X.2010.00619.x

Reprint requests:

Robert S. Kirsner, MD, PhD, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Ave. RMSB 2023A, Miami, FL 33136, USA. Tel: +1 305 243 4472; Fax: +1 305 243 6191;

Email: rkirsner@med.miami.edu

Wound Repair And Regeneration

The role of surgical debridement in healing of diabetic foot ulcers

Elizabeth Lebrun, Marjana Tomic-Canic PhD, Robert S. Kirsner MD, PhD

First published: 14 September 2010 | https://doi.org/10.1111/j.1524-475X.2010.00619.x abnormal wound bed and wound edge tissue, such as hyperkeratotic epidermis (callus) and necrotic dermal tissue, foreign debris, and bacteria elements known to have an inhibitory effect on wound healing. While the rationale for surgical debridement seems logical, the evidence for its role in enhancing healing is deficient. In this paper, we systematically review five

Email: rkirsner@med.miami.edu

The role of surgical debridement in healing of diabetic foot ulcers

Elizabeth Lebrun, Marjana Tomic-Canic PhD, Robert S. Kirsner MD, PhD

First published: 14 September 2010 | https://doi.org/10.1111/j.1524-475X.2010.00619.x l Crizad has an abnormal wound bed and wound edge tissue, such as hyperkeratotic epidermis (callus) and necrotic dermal tissue, foreign debris, and bacteria elements known to have an inhibitory effect on wound healing. While the rationale for surgical debridement seems logical, the evidence for its role in enhancing healing is deficient. In this paper, we systematically review five Email: rkirsner@med.miami.edu

Debridement?

Indications:
Decreased pulses in feet (785.9). Numbness. Left foot wound. HIO LLE angioplasty. Clinical Examination: BP: Right 180/Left 182/

BP: Right 160/Left 162/							
Segmen		Right					
Segmen	Pressure	ABI	Waveform	Calc	PPG		
Ankle (PT)	161	0.88	Triphasic				
Ankle (DP)	140	0.77	Biphasic				
1st Digit	77	0.42			Mildly Diminished		

Segment	Left				
Segment	Pressure	ABI	Waveform	Calc	PPG
Ankle (PT)	129	0.71	Biphasic		
Ankle (DP)	92	0.51	Biphasic		
1st Digit	21	0.12			Moderately Diminished

Impression:
Right Lower Limb
Disease Severity: Mild decrease in arterial perfusion to the lower extremity
The great toe pressure is mildly decreased

Left Lower Limb
Disease Severity: Moderate decrease in arterial perfusion to the lower extremity
The great toe pressure is severely decreased

Consensus Development Conference on Diabetic Foot Wound Care

7-8 April 1999, Boston, Massachusetts

AMERICAN DIABETES ASSOCIATION

QUESTION 1: What is the value of treating a diabetic foot wound?

To improve function and quality of life.

1. To control infection. levels to a control infection. levels to a control infection.

"I control infection, levera be a because the U.S. are moving the health care system to maintain health status. See the movement of the leverage and the coming more cost-effective; this toward becoming more cost-effective; the toward becoming more c

2012 Infectious Diseases Society of America Clinical Practice Guideline for the Diagnosis and Treatment of Diabetic Foot Infections^a

Benjamin A. Lipsky,' Anthony R. Berendt,' Paul B. Cornia,' James C. Pile, 'Edgar J. G. Peters,' David G. Armstrong,' H. Gunner Deery,' John M. Embil,' Warren S. Joseph,' Adolf W. Karchmer,¹⁰ Michael S. Pinzur,' and Eric Senneville

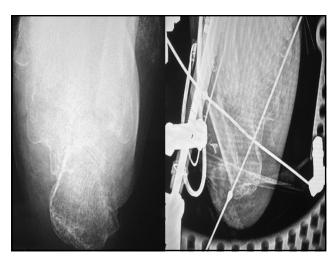
The Quarter of Medicine, University of Washington, Venerana Affairs Rugar Sound Hash Dear Systems, Seattle, "Bose Infection Unit, Natfaild Orthopaedic Centre, Oxford University Hospitals NIS Trust, Oxford: "Department of Medicine, University, Respitals NIS Trust, Oxford: "Department of Medicine, University of Washington, Veteran Affairs Puget Sound Health Care Systems, Seattle," Divisions of Hospital Medicine and Infections (Darget Infection, University of Washington, Veteran Affairs Puget Sound Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands: "Southern Arizona Limb Salvaga Affairance, Department of Surgery, University of Affairance, Ususors," Verthern Michigan Infections (Biseases, Petrolayer, "Department of Medicine, University of Affairance, Ususors, "Verthern Michigan Infections (Biseases, Petrolayer, "Department of Affairance, Ususors," Verthern Michigan Infections (Biseases, Petrolayer, Poutorough Memorial Hospital, Philadelphia, Pemprayhania, "Department of Medicine, Division of Hedicine, Division of Medicine, Division of Medic

2012 Infectious Diseases Society of America Clinical Practice Guideline for the Diagnosis

Antibiotic therapy is necessary for virtually all infected wounds, but it is often insufficient without appropriate wound care.

Recommendation 1. In patients with a DFI with an open wound, we suggest doing a probe to bone (PTB) test to aid in diagnosis (Grade 2C).

- Hindfoot osteomyelitis a challenge met by all those treating the foot and ankle
- Osteomyelitis secondary to diabetic foot ulceration is an unfortunate complication that may require
 - Long term intravenous antibiotics
 - Operative debridement
 - Amputation, and commonly a combination of these.
- Debridement/complete excision of infected bone
 - Soft tissue coverage
 - Compliance of patients


Antoniou D, Conner AN. Osteomyelitis of the calcaneus and talus. J Bone Joint Surg Am 1974;58:338–45.

- Hindfoot osteomyelitis a challenge met by all those treating the foot and ankle
- Osteomyelitis secondary to diabetic foot ulceration is an unfortunate complication that may require
 - Long term intravenous antibiotics
 - Operative debridement
 - Amputation, and commonly a combination of these.
- Debridement/complete excision of infected bone
 - Soft tissue coverage
 - Compliance of patients

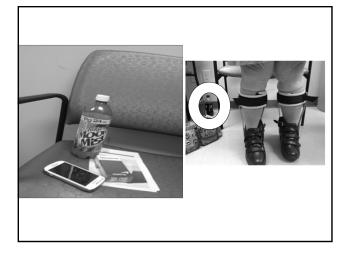
Antoniou D, Conner AN. Osteomyelitis of the calcaneus and talus. J Bone Joint Surg Am 1974;56:338–45.

Deformity

- Pathophysiologic mechanism complex

 - Neuropathy Repetitive trauma
 - Focal tissue ischemia
 Tissue Destruction
- · Foot deformities

 - CharcotNeuroarthropathy
- · Limited joint mobility Glycosylation of soft tissue


Charcot Neuroarthropathy/Abnormal pressure

- "The Majority of foot ulcers appear to result from minor trauma in the presence of sensory neuropathy" McNeely
- Critical Triad: (65% of diabetic foot ulcers)
 - Neuropathy
 - Deformity
 - Trauma

- "The Majority of foot ulcers appear to result from minor trauma in the presence of sensory neuropathy" McNeely
- Critical Triad: (65% of diabetic foot ulcers)
 - Neuropathy
 - Deformity
 - Trauma

Foot Care

- Prevention
 - Ulcer Prevention
 - Diabetic foot exams
- Offloading
 - Surgical offloading
 - Prosthetic offloading
- Ulcer Care
 - Debridement
 - Infection prevention
 - Optimize wound healing

Venous

- Majority of Leg ulcersInnactivates normal antibacterial property
- Inhibits mitogenic activity
- Etiology uncertain

 Fibrin cuff
 - - · Fibrin leaks creating cuff
 - WBC
 - Increased inflammatory mediators
 - · Mast cell stimulation

