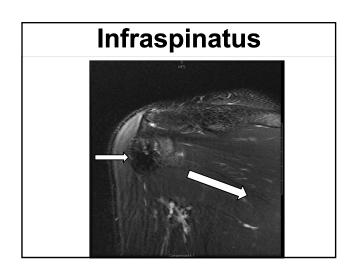
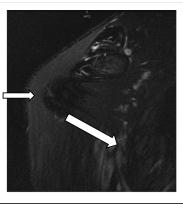
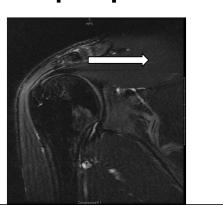
Evaluation and Management of Atraumatic Shoulder Pain

Andrew Neviaser, MD
Assistant Professor - Clinical
Department of Orthopaedics
The Ohio State University Wexner Medical Center


Outline

- Anatomy
- Biomechanics
- Differential Diagnosis
 - Pathology
- Evaluation (X rays!!)
- · Treatment vs. Referral


Force Couples



Subscapularis

Supraspinatus

Differential Diagnosis

- Rotator Cuff Disease
- Adhesive Capsulitis
- Glenohumeral Osteoarthritis
 - Calcific Tendinitis

Evaluation

- History and Physical Exam
- Traumatic is different
- Always get X-rays
- MRI for pre surgical planning

Rotator Cuff Disease

- · Shoulder Impingement
- Rotator Cuff Tendinosis
- · Rotator Cuff Tendinitis
- Shoulder Bursitis
- · Long Head of Biceps Tendinosis

All are essentially the same process

Rotator Cuff Disease

- · Degenerative process
- Increasing with Aging Population
- · Not clearly an overuse problem

Rotator Cuff Tears Prevalence

- 5-39% Cadaveric studies
- 9% Postmortem (DePalma et al. ICS '50)
- 18% by Arthrogram (Pettersson Act Scand '42)
- 28% in age > 60 yrs. (Sher et al. JBJS '95)
- Over age 80 >50% (Tashijian 2015)
- MRI and Cadaveric studies support 10-40% of population >60 yo has cuff tear

Why?

- Intrinsic
 - Vascularity
 - Internal strain
 - Morphology
 - Stiffness
 - Genetics
- Extrinsic
 - Subacromial Impingement
 - Internal Impingement
 - Acromial shape
 - Spurring
 - Mechanics

Genetic influences in the aetiology of tears of the rotator cuff

SIBLING RISK OF A FULL-THICKNESS TEAR

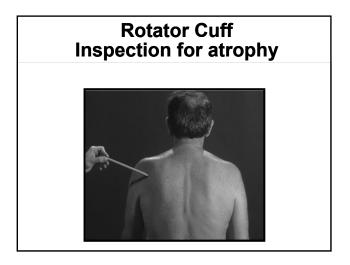
P. Harvie, S. J. Ostlere, J. Teh, E. G. McNally, K. Clipsham, B. J. Burston, T. C. B. Pollard, A. J. Carr

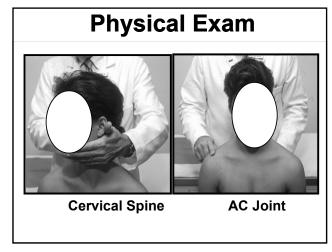
- 205 pts
- 129 Siblings, 150 spouses
- Relative risk of symptomatic fullthickness tears in siblings versus controls was 4.65 (95% CI 2.42 to 8.63)

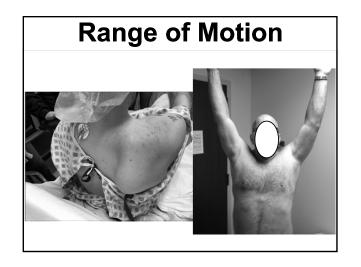
Prevalence Data

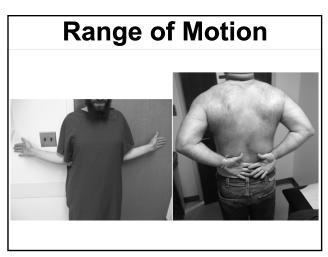
- MRI and Cadaveric studies support 10-40% of population >60 yo has Cuff tear
- US Population 2010=308.4 million
 - Over Age 60 = 57 million
- Conservative Estimate (10%):
 - · 5.7 million cuff tears in USA
- BUT only 270,000 rotator cuff surgeries are done each year....
- 4.7% of People with Cuff Tears have Surgery...

If 95% of People with Rotator Cuff Tears are not having Surgery....


Rotator Cuff Tears Physical Exam


Early


- Usually full passive ROM
- Stiffness RARE! (9%)
- Pain with Elevation
- · Loss of IR
- Night Pain
- Weakness is uncommon

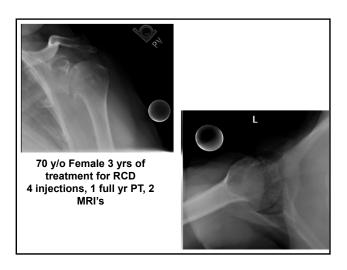

Later

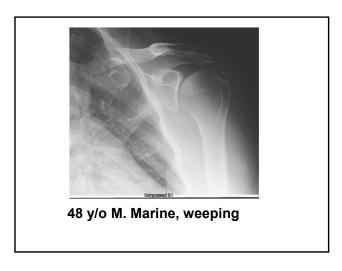
- Spinati atrophy
- Weakness of Elevation
- Weakness of ER (at side)
- · Drop sign
- · Lag sign
- · Biceps rupture

Strength Testing

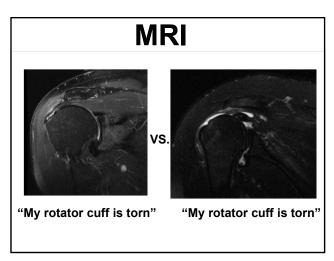
Subscapularis Tests

Lift-off


Belly Press


Impingement Signs





				Ro						
Test	Authors	LOE	<u>N</u>	Sens	Spec	PPV	NPV	+LR	<u>-LR</u>	Accuracy
Drop Arm Test	Park 2005		913	.349	.875	.650	.668	2.79	.744	.665
Jobe-Pain	Itoi 1999		143	.63	0.55	.31	.82	1.4	0.7	.57
Jobe-Pain	Kim2006		200	.939	939	.462	939	15.39	.065	.62
Jobe-Weakness	Itoi 1999		143	.77	0.68	.44	.90	2.4	0.3	.70
Jobe-Weakness	Kim 2006		200	757	.709	.562	.855	2.60	.343	.725
Full Can-Pain	Itoi 1999		143	0.66	0.64	.37	.85	1.8	0.5	.64
Full Can-Pain	Kim 2006		200	.712	.679	.552	.827	2.218	.424	.69
Full Can- Weakness	Itoi 1999		143	0.77	0.74	.49	.91	3.0	0.3	.75
Full Can – Weakness	Kim 2006		200	.773	.679	.543	.858	2.408	.334	.71
Supraspinatus Test	Holtby 2004		50	.411	.697	.411	.697	1.37	0.84	.60
Neer	MacDonald 2000		85	0.833	0.508	.400	.886	1.693	0.329	.588
Neer	Park 2005		913	.593	.472	.413	.649	1.12	.862	.518
Hawkins	MacDonald 2000		85	0.875	0.426	.375	.897	1.524	0.293	,659
Hawkins	Park 2005		913	.687	.483	.452	.712	1.33	.648	.500
Painful Arc	Park 2005		913	.758	.618	.610	.764	1.98	0.391	.680
Rent test (palpation)	Wolf 2001		109	.957	.968	.957	.968	30.1	0.0	.963

A Prospective Evaluation of Survivorship of Asymptomatic Degenerative Rotator Cuff Tears

Jay D. Keener, MD, Leeu M. Galatz, MD, Sharlene A. Teefey, MD, William D. Middleton, MD, Karen Steger-May, RA, Georgia Stobbs-Cucchi, RN, Rebecca Patton, MA, and Ken Yamaguchi, MD

- 228 pt f/u 5 yrs,
- 49% Enlarged, Mean time 2.8 yrs
- · 46% Increased pain
- 61% Full thickness, 44% PTT enlarged

Patients with symptomatic rotator cuffs may be at risk for size progression over time

Effectiveness of physical therapy in treating atraumatic full-thickness rotator cuff tears: a multicenter prospective cohort study

- · 452 pts with full thickness tears
- · Standardized PT program
- · Followed 2 yrs
- Less than 25% opted for surgery, most did so early 3-12wks

Effectiveness of Therapy 5 Year Outcomes Syear outcomes Syear outcomes Syear outcomes Syear outcomes Syear outcomes Syear outcomes Sourgery Cured Sourgery Should be surgery Should be surgery Those that had Surgery Decided Early

Features **NOT** Predictors of Surgery

Patient Factors

- · Age, sex, BMI
- Handedness
- Education, occupation
- Work-compensation status
- Comorbidities
- · Pain level
- Duration of symptoms
- SANE score

Structural Factors:

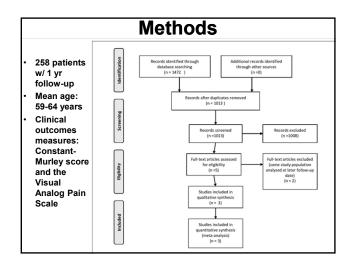
- Number of tendons torn
- Amount of retraction
- Forward elevation strength

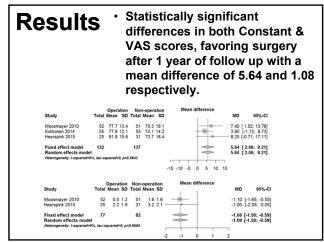
What are the Predictors of Failure of Non-operative Treatment?

- Anatomic Severity of Tear- NO ASSOCIATION
- Symptoms (pain, strength)

 ASSOCIATION
- Associations
 - Higher Activity Level (p=0.011)
 - Not Smoking (p=0.023)
 - Younger Age (p=0.042)

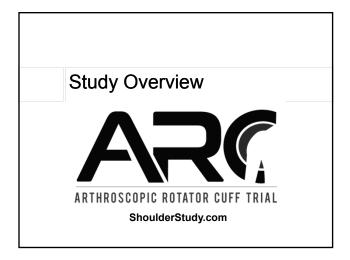
Predictors of Failure of Non-operative Treatment? Strongest Association


- Low Patient Expectations Regarding Success with Therapy (p<0.0001)
- If a patient thought PT would not be effectiveit generally wasn't
- If a patient thought PT would be effective-lt was


Operative versus Non-Operative
Treatment for the Management of Full
Thickness Rotator Cuff Tears:
A Systematic Review & Meta-analysis

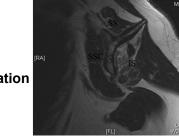
Christine Piper MD, Alice Hughes MD, Yan Ma PhD, Haijun Wang PhD, Andrew Neviaser MD

Purpose


- There has been recent trend toward surgery for atraumatic rotator cuff tears, however, no consensus exists on whether surgery is the optimal treatment.
- The aim of this study is to analyze the Level I and II research comparing operative versus non-operative management for atraumatic rotator cuff tears.

Conclusions

- There was a statistically significant improvement in outcomes for patients managed operatively compared to nonoperatively.
- The difference in both Constant Score and VAS were small and do not meet the minimal difference considered clinically significant.



Study Overview STUDY TITLE Operative versus Non-Operative Treatment for Atraumatic Rotator Cuff Tears: A Multicenter Randomized Controlled Pragmatic Trial SHORT TITLE Arthroscopic Rotator Cuff (ARC) Clinical Trial PRINCIPAL INVESTIGATOR FUNDED BY Patient-Centered Outcomes Research Institute (PCORI) LENGTH 5 years total (3 ½ years recruitment) RECRUITMENT TARGET PARTICIPATING SITES 12 (including Vanderbilt)

Reasons to Operate

- Trauma
- Pain
- Function
- Progression
- Fatty Degeneration

Rotator Cuff Summary

- · Multifactorial in Origin
 - · History, PE, X-Ray
 - Surgery for
 - 1.Traumatic tears
 - 2. Younger patients
 - 3.Larger tears
 - 4. Failure of Non Op

Rotator Cuff Arthropathy

Indications for Reverse

- RCA
- Revision Arthroplasty
- Massive Tears in Elderly
- Severe OA
- Fractures

Adhesive Capsulitis

Adhesive Capsulitis

- A painful, gradual loss of both active and passive glenohumeral motion resulting from progressive fibrosis and ultimate contracture of the glenohumeral joint capsule.
- · Terminology is an issue

Demographics

- 2-5% of population
- Females >males
- Between ages 40 and 60
- · Non-dominant shoulder
- More common in diabetics (and more resistant to treatment)

Keys to Diagnosis

- Early → Pain in all planes of motion
- Later→ Mechanical restriction of passive ROM
- Easiest to feel as tethering of ER at the side
- X-Rays- Normal! (or osteopenia)

Keys to Diagnosis

Stages

- Stage I Pre-adhesive
- · Stage II Acute adhesive synovitis
- Stage III Maturation
- Stage IV Chronic

Physical Therapy - High-grade vs Low-grade

- 100 patients
 Sx >3mos, >50% loss PROM
- Randomized to:
 - **HGPT-intensive mobilization at end-range positions**
 - LGPT-passive mobilization within pain free zone
- Outcomes
- Shoulder Rating Questionnaire Shoulder Disability Questionnaire
- F/U 3,6,12 months
- Results
 - Both groups improved
 - HGMT significantly better for passive abduction (3, 12 months); external rotation (12 months)

Vermeulen HM Comparison of high-grade and low-grade mobilization techniques in the management of adhesive capsultitis of the shoulder: randomized controlled trial. Phys Ther 86(3):355-68, 2006.

Long-term Outcomes

- Shaffer et al 1992,
- Retrospective review, brought patients back for examination
 - Average 7 years from diagnosis
 - 92 patients met criteria, 62 participated (67%)
 - 31 (50%) with mild pain and/or stiffness
 - 60% with evidence of restriction in at least 1
 - 7 (11%) reported interference with function
 - No correlation between ROM and complaints

Shaffer B. Frozen shoulder. A long term follow up. JBJS 74A(5):738-46, 1992

Arthroscopy

- Prospective study of 73 patients (LOE 4) **Arthroscopic Capsulotomy**
 - Mean symptom duration- 19.7 months!!
 - Mean age 52, 57% females
 - 70% of patients had aggravation of pain at 4.5 weeks, 37% required corticosteroid injection
 - 12 month changes in pain, function, and **ROM** maintained
 - 11% had recurrence of pain or stiffness

Watson L. Frozen shoulder: a 12-month clinical outcome trial. J Shoulder Elbow Surg 9(1):16-22, 2000

Adhesive Capsulitis

- · When to refer?
 - Failure to improve after treatment of 4
 - Unsatisfied with function or level of pain after 8-12 months of physical therapy.

Summary

- 1. Rotator Cuff Disease
- 2. Adhesive Capsulitis
- 3. Glenohumeral Osteoarthritis
 - 4. Calcific Tendinitis
- History and Physical Exam
 - Traumatic is different
 - Always get X-rays