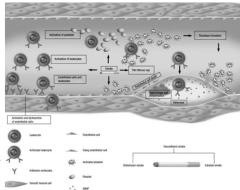
Transcatheter Aortic Valve Replacement

Scott M. Lilly, MD, PhD
Associate Professor - Clinical
Division of Cardiovascular Medicine
The Ohio State University Wexner Medical Center

Outline

- Aortic Stenosis
- Advent of TAVR
- TAVR Candidacy
- Long-term Success

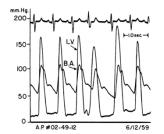


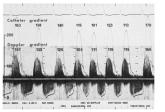
Aortic Stenosis Pathophysiology

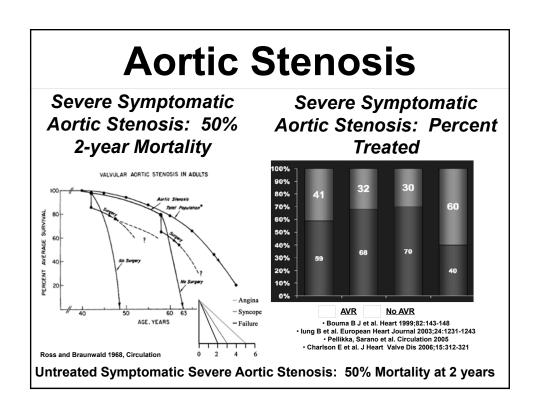
- Pathophysiology for degenerative AS is similar to atherosclerosis.
- Involves inflammation/immune system activation, fibrosis and calcifications, etc
- Risk factors are shared, HTN, hyperlipidemia, tobacco use, sex
- Medical therapy that is shown to be effective for atherosclerosis is not effective for valve sclerosis

Pathophysiology of atherosclerosis

Patel, V., D. Chisholm., T. Dua, R. Laxminarayan, and M. E. Medina-Mora, editors. 2015. *Mental, Neurological, and Substance Use Disorders*. Disease Control Priorities, third edition, volume 4. Washington, DC: World Bank. doi:10.1596/978-1-4648-0426-7. License: Creative Commons Attribution CC BY 3.0 IGO


Aortic Stenosis

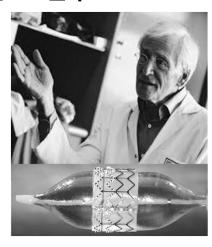

"In every patient the presence of aortic stenosis was confirmed by the demonstration of a systolic pressure gradient between the left ventricle and brachial artery at the time of left heart catheterization"

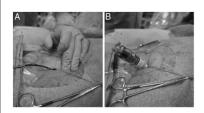


Morrow et al. 1963, Ann Surgery; Brockenbrough et al. 1961, Circulation; Curie 1985

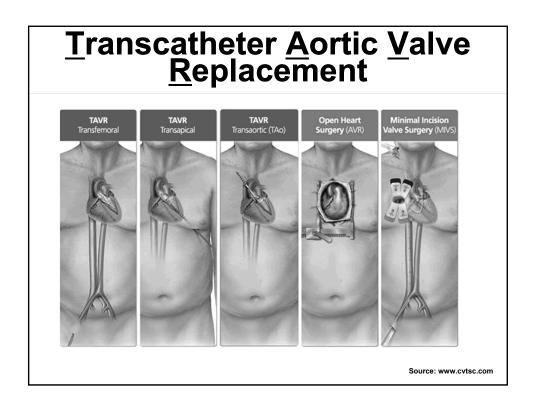
Aortic Stenosis Pathophysiology

- Changes in the LV result from increased afterload
- Initially LV hypertrophies, but overtime remodeling occurs leading to fibrosis and dilation, eventually decreased LVEF and heart failure
- Subendocardial ischemia due to transmural pressure gradient, exacerbated by concomitant CAD
- Increased LVEDP/filling pressures, pulmonary hypertension/edema, RV overload

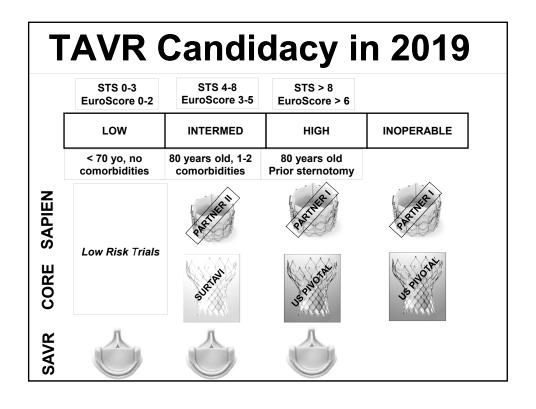


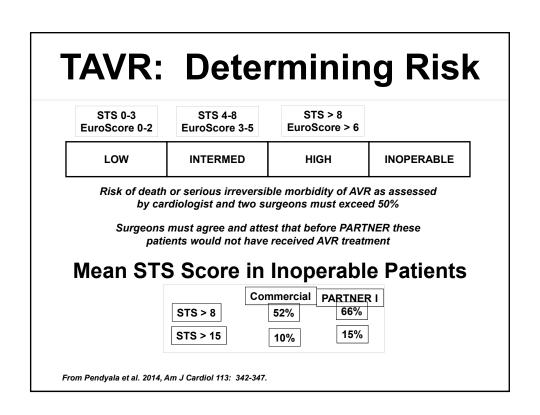

A Novel Approach...

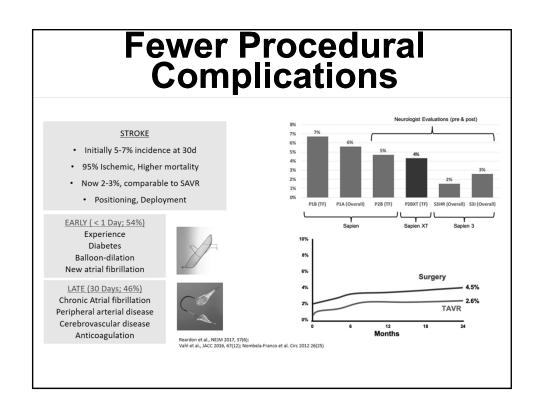
<u>Transcatheter Aortic Valve Replacement</u>




<u>Transcatheter Aortic Valve</u> <u>Replacement</u>

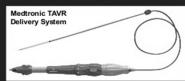


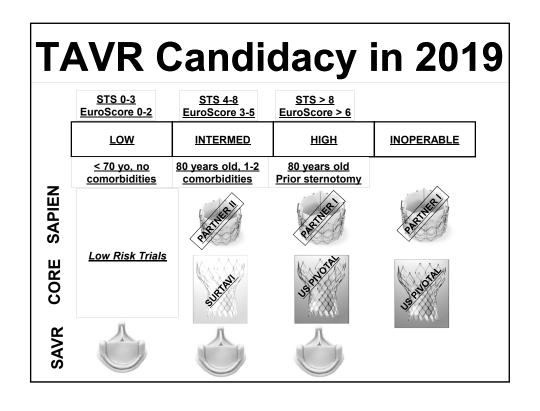


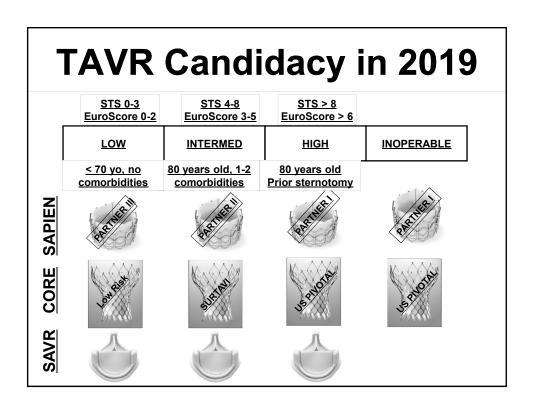


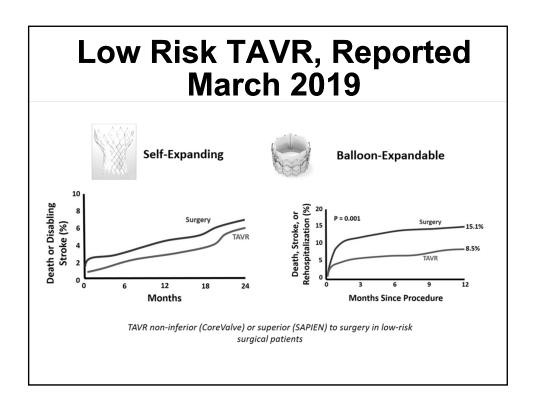
Variable	EuroSCORE II STS Score	Variable	X EuroSCORE II	X STS Score
Age	x x	Recent myocardial infarction		X
Gender	X X	Timina		X
Height Weight				X
Body mass index	<u>linical Features</u>		1	X
Diabetes mellitus	Severity of pulmonary	hypertension	1	
Chronic lung/pulm	Degree of coronary or	peripheral arteri	al	**
disease Mild/moderate/s	disease	•		X
Extracardiac arterio	Liver disease			
Peripheral vascular	Dementia			
Neurologic dysfun	Demenua			x
Cere brovascular ac				^
Poor mobility	rocedural Consideration	<u>ns</u>		X
Previous cardiac su Number of previ	Porcelin aorta, chest	radiation, LIMA c	ourse	
operations	Access Route	,		x
Previous coronary	Peri-procedural Supp	ort		
Previous valve sur	i eii-pioceddiai oupp	ort		
Renal failure/impai				
Dialysis-dependent failure	omposite Indices		1	
Serum creatinine/clea	Frailty		/	
Hypertension				
Active endocarditis	x x	Weight of intervention	, X	X
mmunosuppressive thera		Single noncoronary	v	X
Arrhythmia	X	bypass/2 or 3	X	

PARTNER 3 Low Risk Trial

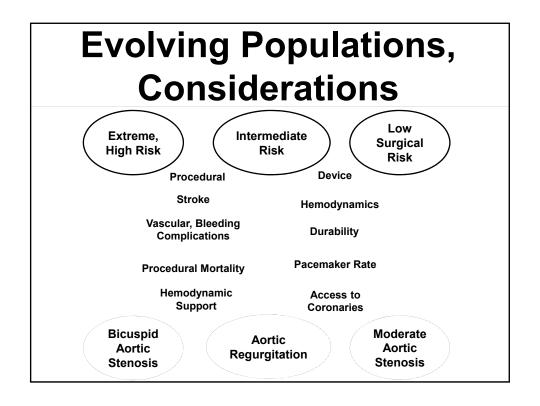


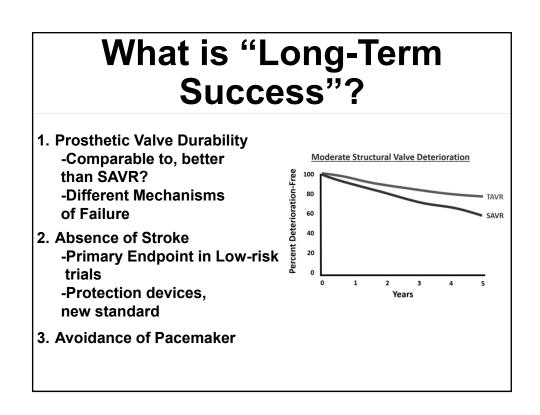

- Randomized trial (n=1328) comparing Edwards SAPIEN 3 vs. SAVR
- Symptomatic, severe, calcific AS
- Heart Team agrees patient has STS risk of mortality
 <4%
- Primary outcome: all cause mortality, all stroke, rehospitalization
- Patient follow-up at 30 days, 6 months, and annually through 10 years


EVOLUT R Low Risk Trial

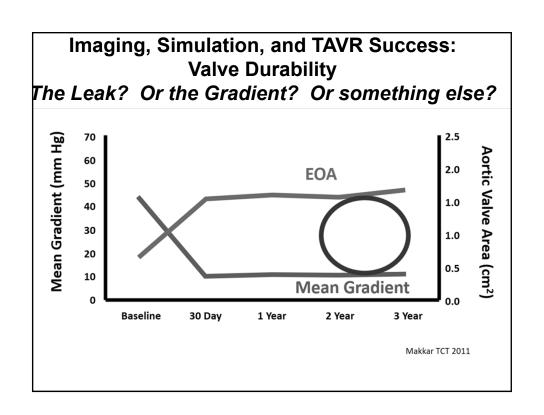


- Randomized trial (n=1200) comparing Medtronic Evolut vs. SAVR
- Severe symptomatic or asymptomatic AS
 - Very severe AS: AVA≤1cm² AND max velocity ≥5m/sec or mean gradient ≥60mmHg
 - AVA≤1cm² AND mean gradient ≥40mmHg or max velocity
 ≥4m/sec AND positive exercise tolerance test
 - AVA≤1cm² AND mean gradient ≥40mmHg or max velocity
 ≥4m/sec AND LVEF ≤50%




Low Risk TAVR Trials Reported March 2019

Transcatheter versus Surgical Outcomes in Low Risk Trials


Outcome	CoreValve	SAPIEN Valve
Death	Similar	Lower
Stroke	Lower*	Lower
Bleeding	Lower*	Lower*
Vascular Complication	Similar	Similar
Kidney Injury	Lower*	Similar
New Atrial Fibrillation	Lower*	Lower*
Pacemaker	Higher*	Similar
Rehospitalization	Lower*	Lower
Length of Stay	Shorter*	Shorter*
KCCQ/QOL Improvement	Higher* (30-d)	Higher*
Discharged Home		Higher*

Combined 12-month stroke and mortality was LOWER with TAVR compared to Surgical Valve Replacement

Imaging, Simulation, and TAVR Success: **Valve Durability** The Leak? Or the Gradient? Or something else? Paravalvular Leak Tends to Remain Stable or Regress over Time 2 year 4 Year Baseline Follow-Up p Value 19.1 (18.0-20.2) 17.1 (15.9-18.4) 0.002 Peak gradient* Aortic regurgitation† < 0.01 None None/trivial 73/221 (33.0) 105/221 (47.5) Trace Mild 126/221 (57.0) 94/221 (42.5) Moderate 22/221 (10.0) 21/221 (9.5) 0/221 (0.0) 1/221 (0.5) Moderate **PVL Incidence Decreasing...** Related to ... Earliest TAVR RCT ~ 10% Sizing, LVOT - Aortic Angle, depth, Most recent ~ 4% valve type Kodali et al., 2012 NEJM Blackmon et al., 2019 JACC

Imaging, Simulation, and TAVR Success Might Valve Durability and Cerebroembolism Share a Substrate?

Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study

Tarun Chairavarry, Lars Sandargaard, John Friedman, Ole De Backer, Daniel Berman, Klaus F Kofoed, Hasan Jilaihawi, Takahira Shiota, Yigal Akramowsitz, Trods F Jengersen, Tanya Rami, Sharjeel Israe, Gregory Fontana, Martina de Knegt, Andreas Fuchs, Patrick Lyden, Alfredo Trenta, Deepok I. Bhatt, Martin B Leon, Raj R Makkar, on behalf of the RESOLVE and SAVORY Investigators

Lancet 2018 (389) 2383-2392.

A meta-analysis of reduced leaflet motion for surgical and transcatheter aortic valves: Relationship to cerebrovascular events and valve degeneration $^\pm$

Nader Makki ^a, Satya Shreenivas ^b, Dean Kereiakes ^b, Scott Lilly ^{a,e}

Cardiovasc Revasc Med 2018 (19) 868-873

Less common with anticoagulation Can resolve with anticoagulation

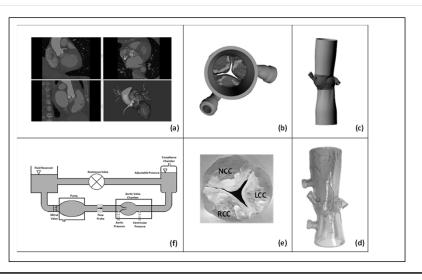
Precedes significant increase in gradient

May precede valve degeneration and/or correlate

with cerebroembolism

Advanced Imaging, Simulation and Long-Term Success of TAVR

Imaging, Simulation, and TAVR Success Avoiding Coronary Obstruction


Risk of Coronary obstruction if:

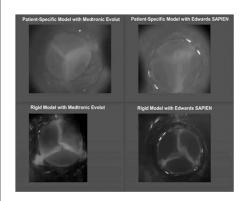
- Coronary height < 10 -12 mm
- Sinus_of Valsalva diameter (SOVd) < 30 32 mm

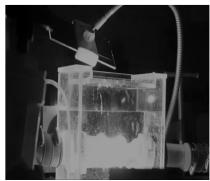

26 % of TAVR cases were excluded

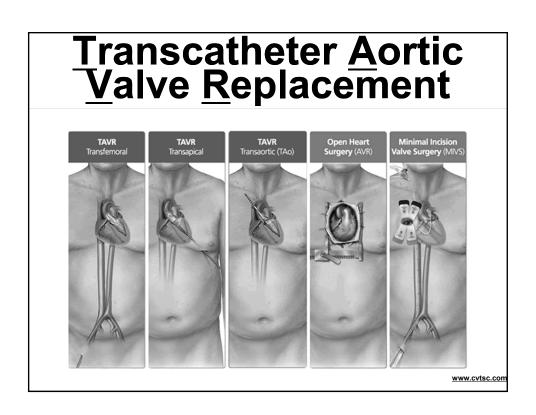
(Ribeiro et al, 2013)

Imaging, Simulation, and TAVR Success Collaboration Between Physicians and Scientists

Imaging, Simulation, and TAVR Success Collaboration Between Physicians and Scientists

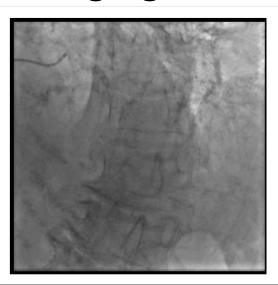


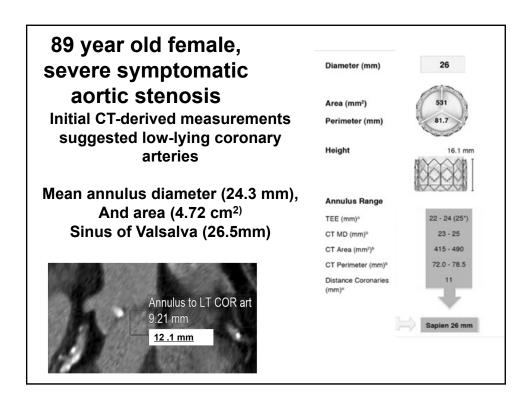

With self-expandable Medtronic Evolut



With balloon-expandable Edwards SAPIEN

Imaging, Simulation, and TAVR Success Collaboration Between Physicians and Scientists




Case Presentation

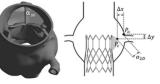
89 year old female, severe symptomatic aortic stenosis

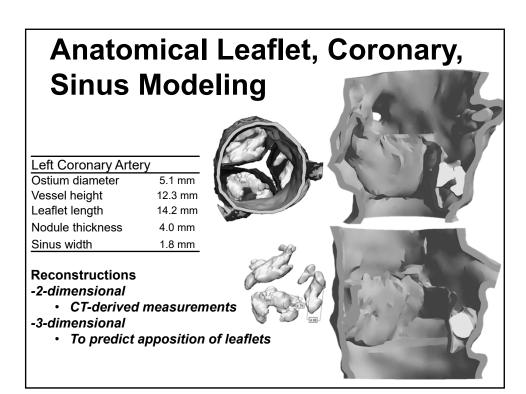
- Mean gradient 48 mm Hg, Vmax 4.4 m/s, AVA0.84 cm²
- Stage III CKD, COPD, insulin-dependent diabetes, prior CVA
 - STS 9%, TAVR 30-d predicted mortality 4.5%

Pre-TAVR Coronary Angiogram

Simulation

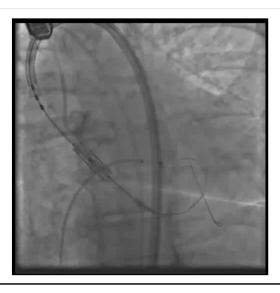
Self-Expandable (SE)

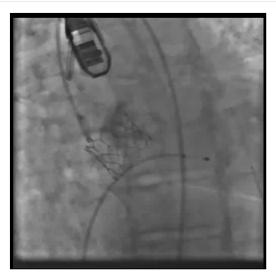

- Crimping TAV
- Delivering TAV to prescribed position
- Releasing TAV by gradually removing sheath

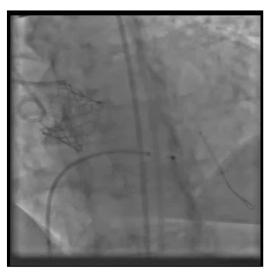

Balloon-Expanding (BE)

- TAV and balloon are already crimped and positioned in prescribed location.
- Balloon is gradually inflated, expanding TAV and pushing away native leaflets.

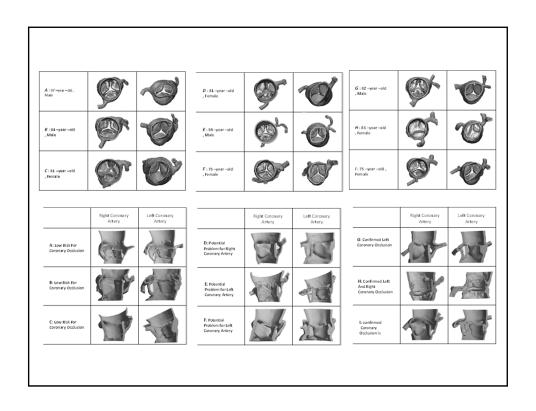
Goal: To estimate the final <u>D</u>istance between native/bioprosthetic <u>L</u>eaflet and <u>C</u>oronary ostium (DLC) and Area available for Coronay Flow (ACF) after TAVR

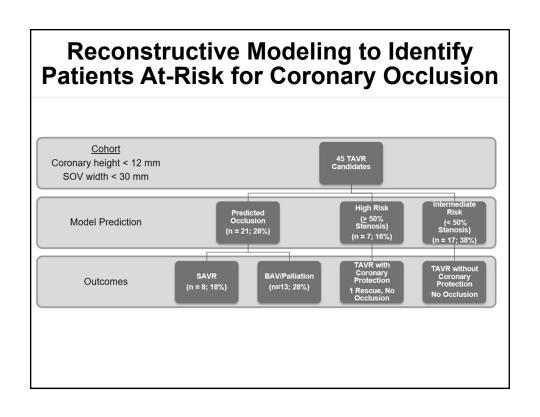


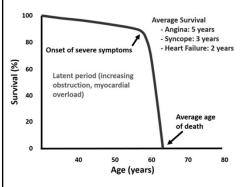

Balloon Valvuloplasty and Aortography


SAPIEN Valve Deployment

Post-Deployment Aortogram

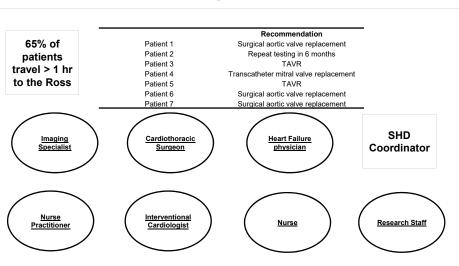



Post-Deployment Angiogram


Now 15 months post-TAVR...

- Not re-hospitalized
- NYHA II
- Valve remains well-seated, trivial aortic regurgitation
- Mean gradient 10 mmHg, calculated AVA 1.8 cm²
- Ejection fraction is 65-70%

Why Coordination is important...



From onset of symptoms the average patient with aortic stenosis survives 2 years.

Prior to TAVR, patients need

- Echocardiogram
- Coronary angiogram
- CT Scan
- Functional status assessment
- · Quality of life assessment
- · Carotid ultrasound
- Pulmonary function tests
- ECG
- Visit with cardiologist, 1 surgeon

One Structural Heart Clinic in August...

Conclusions

- TAVR is here to stay, more common than surgical approach in U.S.
- Procedural and device developments will continue to provide improvements in outcomes
- Patient-specific models and simulation can inform therapy
- · These therapies rely on multidisciplinary care

Acknowledgements

The National Institutes of Health (NIH), the American Heart Association (AHA), OSU Trifit challenge award and OSU presidential fellowship.

