

Malignant Melanoma: Current Management

Joal Beane, MD

Assistant Professor
Department of Surgery
Division of Surgical Oncology
The Ohio State University Wexner Medical Center

MedNet21

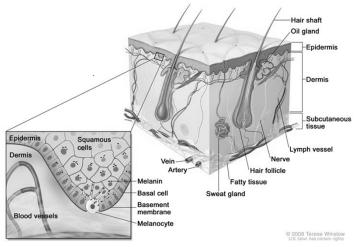
THE OHIO STATE UNIVERSITY
WEXNER MEDICAL CENTER

I have nothing to disclose

Outline

- Epidemiology
- Pathophysiology
- Evaluation and Diagnosis
- Interpretation of a Pathology Report
- Surgical Management
- Role of Surgery for Metastatic Disease

Malignant Melanoma


- Can affect any age, any ethnicity
 - More prevalent in older Caucasian patients
- Can affect nearly any anatomic site
 - Sun-exposed
 - Non-sun exposed areas
- Melanoma incidence is on the rise
- >100,000 new US diagnoses/year
- >6,800 US deaths/year

Laurence Meyer, MD, PhD, University of Utah Health Sciences Center (Photographer)

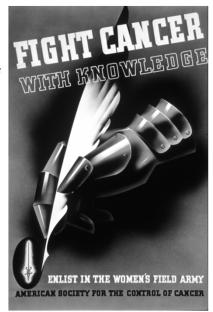
Pathophysiology

- Melanocytes at the dermoepidermal junction
 - Accumulation of UV mutations
 - Uncontrolled/dysregulated growth into the epidermis

For the National Cancer Institute © (9/16/2020) Terese Winslow LLC, U.S. Govt. has certain rights

Subtypes of Melanoma

- Superficial spreading
 - Most common, good prognosis
- Lentigo maligna
 - Slow growing, good prognosis
- Nodular- more aggressive
- Acral- rare
 - Palms, soles, nailbeds
- Desmoplastic
- Mucosal


CDC/ Carl Washington, M.D., Emory Univ. School of Medicine; Mona Saraiya, MD, MPH

Outline

- Epidemiology
- Pathophysiology
- Evaluation and Diagnosis
- Interpretation of a Pathology Report
- Surgical Management
- Role of Surgery for Metastatic Disease

Evaluation and Diagnosis-The History

- When was the lesion first noticed and has it changed?
- Does the patient have a personal or family history of melanoma or other skin cancers?
- Does the patient have a history of excessive sun exposure or tanning bed use?
- Did the patient suffer severe sunburns during their childhood or teenage years?
- Does the patient have a familial cancer syndrome (eg, familial atypical mole and melanoma syndrome or xeroderma pigmentosum)?
- Is the patient immunosuppressed?

G. Terry Sharrer, Ph.d. National Museum Of American History.

Evaluation and Diagnosis-The Physical Examination

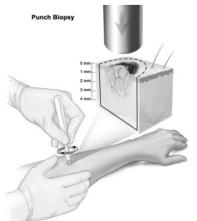
- Skin Examination
 - 1. Pattern Recognition

Asymmetry
Border irregularities
Color variegation
Diameter ≥6 mm
Evolution

The ugly duckling sign

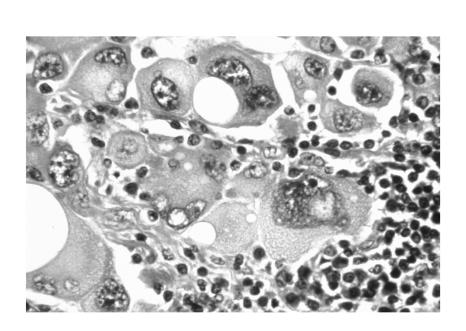
- 3. Dynamic analysis
- Examination of lymph node basins

Garbe et al. Eur J Cancer. 2020;126:141. Epub 2020 Jan 9.


Indications for referral (or biopsy):

- A new mole appearing after the onset of puberty that is changing in shape, color, or size
- A long-standing mole that is changing in shape, color, or size
- Any mole that has three or more colors or has lost its symmetry
- A mole that is itching or bleeding
- Any new, persistent skin lesion, especially if growing, pigmented, or vascular in appearance, and if the diagnosis is not clear
- A new, pigmented line in a nail, especially where there is associated damage to the nail
- A lesion growing under a nail

Marsden et al. Br J Dermatol. 2010;163(2):238. Epub 2010 Jul 1.

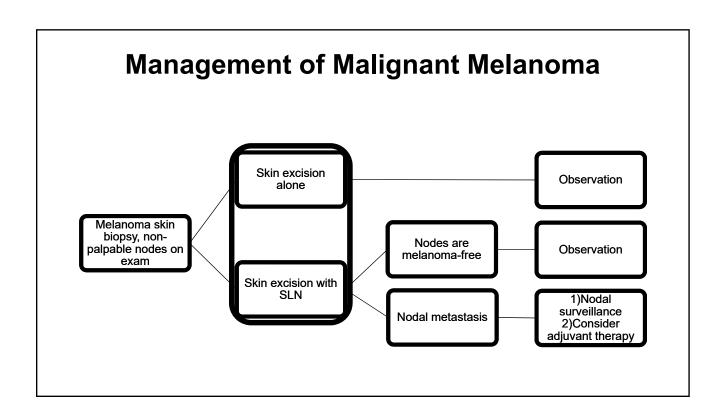

Diagnostic Evaluation—The Biopsy

- Punch biopsy is preferred
 - Provides full thickness specimen to pathology
- If it's shave biopsy versus no biopsy, always prefer shave

For the National Cancer Institute © (9/16/2020) Terese Winslow LLC, U.S. Govt. has certain rights

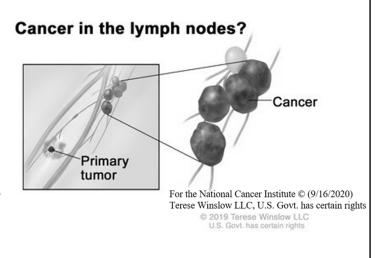
Zager, J American College of Surgeons 212.4 (2011): 454-460.

Courtesy of Dr. Lance Liotta Laboratory


Outline

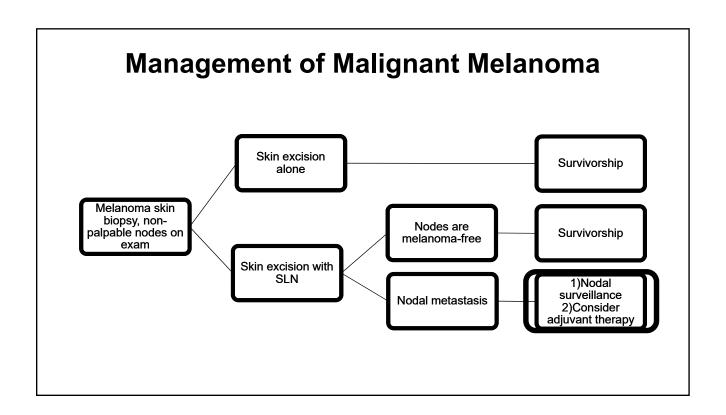
- Epidemiology
- Pathophysiology
- Evaluation and Diagnosis
- Interpretation of a Pathology Report
- Surgical Management
- Role of Surgery for Metastatic Disease

SPECIMEN		
Procedure	Biopsy, shave	
Specimen Laterality	Left	
TUMOR		
Tumor Site	Skin of upper limb and shoulder: Left proximal dorsal forearm	
Histologic Type	Superficial spreading melanoma (low-cumulative sun damage (CSD) melanoma)	
Maximum Tumor (Breslow) Thickness (Millimeters)	1.0 mm	
Ulceration	Not identified	
Anatomic (Clark) Level	IV (melanoma invades reticular dermis)	
Mitotic Rate	None identified	
Microsatellite(s)	Not identified	
Lymphovascular Invasion	Not identified	
Neurotropism	Not identified	
Tumor-Infiltrating Lymphocytes	Present, nonbrisk	
Tumor Regression	Not identified	
MARGINS		
Peripheral Margins	Negative for invasive melanoma	
Distance of Invasive Melanoma from Closest Peripheral Margin (Millimeters)	0.6 mm	
Status of Melanoma in situ at Peripheral Margins	Negative for melanoma in situ	
Distance of Melanoma in situ from Closest Peripheral Margin (Millimeters)	0.5 mm	
Deep Margin	Negative for invasive melanoma	
Distance of Invasive Melanoma from Deep Margin	0.1 mm	


Outline

- Epidemiology
- Pathophysiology
- Evaluation and Diagnosis
- Interpretation of a Pathology Report
- Surgical Management
- Role of Surgery for Metastatic Disease

Melanoma depth	Recommended gross surgical margin	
< 1 mm	1 cm	
1 mm – 2 mm	1 cm – 2 cm	
> 2 mm	2 cm	


- The sentinel lymph node is the most important predictor of survival in patients who present without palpable lymphadenopathy
- Is there microscopic spread of melanoma to lymph nodes?
 - Lymphoscintigraphy defines the specific lymph nodes that are most at risk for melanoma involvement

Gershenwald, *NEJM* 364.18 (2011): 1738-1745.

When do we perform sentinel lymph node biopsy?

- Which patients?
 - ≥ 0.8 mm depth (no other high-risk features)
 - \leq 0.8 mm depth (ulcerated lesion, mitotic index \geq 2/mm², "young" age)
- Sentinel lymph node biopsy should be considered when probability of lymph node metastasis ~5%
- Sentinel lymph node biopsy is safe, but not risk-free

Management of patients with positive sentinel lymph nodes

- Completion lymph node dissection
 - Nearly 20% of patients have additional melanoma-containing lymph nodes
 - Risk of lymphedema
 - Large, painful incisions
 - High risk of postoperative wound complications

MSLT-2 trial

- Randomized patients with SLN metastasis to completion lymph node dissection versus observation
- No difference in melanoma survival!

Faries, NEJM 376.23 (2017): 2211-2222.

Therapy for Stage III or IV disease

Oral tyrosine kinase inhibitors

- Vemurafenib, dabrafenib, etc
- Optimally paired with an oral MEK inhibitor (trametinib)
- Quick tumor response, issues with resistance

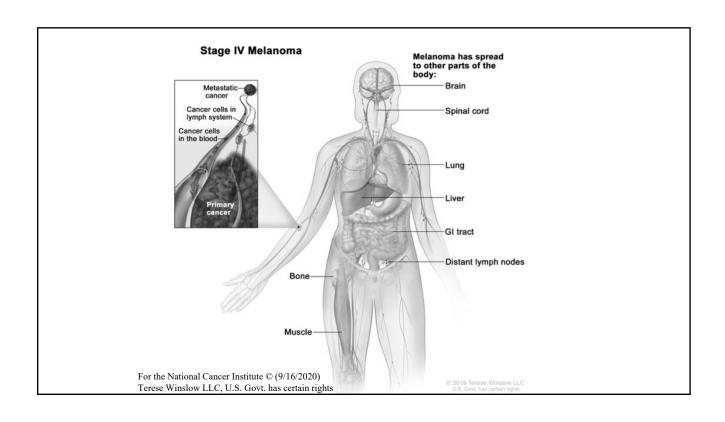
IV immunotherapy

- Pembrolizumab (Keytruda)
- Nivolumab (Opdivo)
- Longer time to clinical response, some toxicities irreversible
- Contraindicated in immunosuppression

Regional immunotherapy

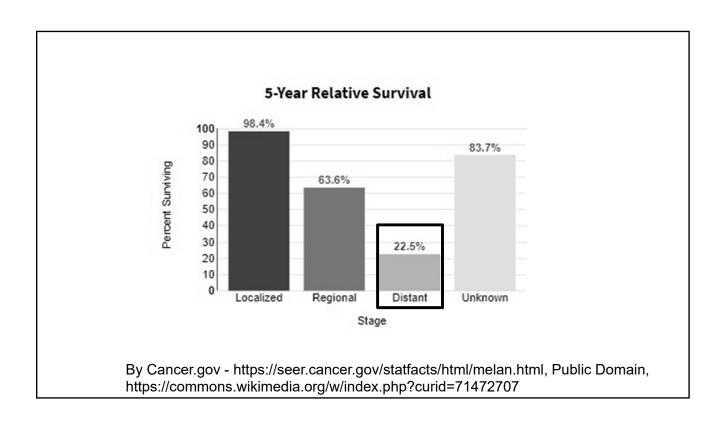
- TVEC (Imlygic)
- Requires intralesional administration every 2 weeks for 6 months

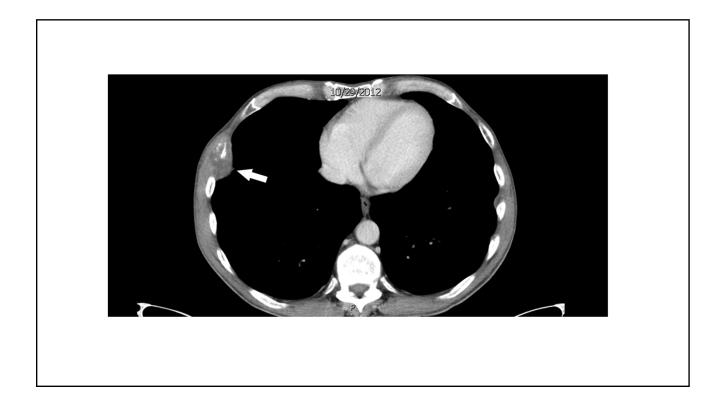
Survivorship: skin surveillance


- Regular complete skin exams
 - Melanoma in situ: every 12 months
 - Stage IA-IIA: every 6-12 months for 5 years, then annually
 - Stage IIB-IV: every 3-6 months x 2 years, then every 3-12 months x 3 years, then annually


- Low risk invasive melanoma: excision alone
- Higher risk melanoma : excision with sentinel lymph node biopsy
- Patients who present with clinically palpable lymphadenopathy or concern for distant disease: biopsy of suspicious sites
- If proven nodal or distant spread: staging work up and multidisciplinary management

Surgical Management of Stage IV Disease




Courtesy of Jeremy Davis (photographer)

Take-Home Points

- Melanoma is the deadliest form of skin cancer and the incidence is increasing
- Suspicious lesions should be referred to a specialist and biopsied
- Surgical resection is the mainstay of treatment for cutaneous melanoma and may be combined with sentinel node biopsy to provide important prognostic information
- Patients with advanced melanoma should be managed by a multidisciplinary team
- Surgical resection in patients with Stage IV disease can improve survival in select patients
- Patients with melanoma require lifelong surveillance

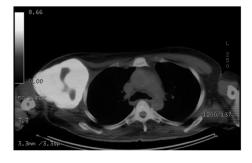
THANK YOU!

The role of surgery in advanced melanoma

Carlo M. Contreras, MD, FACS

Section Head for Melanoma/Sarcoma, OSU Division of Surgical Oncology The Ohio State University Wexner Medical Center

MedNet21
Center for Continuing Medical Education


Topics

- Role of neoadjuvant therapy for patients with resectable Stage III/IV disease
- Role of metastasectomy in advanced melanoma

Challenging case

Neoadjuvant therapy

COMPLETE PATHOLOGIC RESPONSE

 Neoadjuvant pembrolizumab with concurrent radiation therapy

 $\begin{array}{c} CED \\ \hbox{Clinical and Experimental Dermatology} \end{array}$

CPD

CPD • Therapeutic vignette

Pathological complete response after neoadjuvant pembrolizumab and radiation

J. N. Mynard, ¹ R. M. Conry, ² J. De Los Santos, ³ J. B. Gordetsky ⁴ and C. M. Contreras ⁵ (b)

¹School of Medicine, ²Division of Hematology-Oncology, ³Department of Radiation Oncology, ⁴Department of Pathology and ⁵Division of Surgical Oncology, University of Alabama at Birmingham, Birmingham, AL, USA

doi: 10.1111/ced.13820

Objectives

- Describe at least 2 advantages of neoadjuvant therapy in patients with resectable Stage III/IV melanoma
- List the 2 main classes of neoadjuvant therapy in patients with resectable Stage III/IV melanoma
- State at least 2 roles for metastasectomy in patients with Stage IV melanoma

Rationale for neoadjuvant therapy

- Earlier systemic therapy for tumors with high risk for systemic disease
- Opportunity to determine if the tumor is responsive
- Surgical complications, multi-stage resection/reconstruction can delay initiating systemic therapy
- Neoadjuvant therapy can facilitate a less morbid operation
- Having a complete pathologic response may predict favorable longterm outcome

Types of melanoma therapy

Immune checkpoint inhibitors

- IV medications
- Remove the "brakes" of the immune system
- Pembrolizumab
- Nivolumab
- Ipilimumab

BRAF/MEK inhibitors

- Oral medications
- Effective only for tumors with BRAF mutations
- Paired with MEK inhibitors
- Vemurafenib, dabrafenib, encorafenib

Intralesional therapies

- A diverse set of agents
- Injected directly into tumors
- Viral
- Immunomodulators

Neoadjuvant BRAF/MEK inhibitors: NeoCombi trial

Study design

- Single institution, Phase II study
- Stage IIIB-C melanoma
 - All patients BRAF mutant
- ECOG performance status 0-1
- 35 patients:
 - BRAF/MEK inhibitor x 12 weeks
 - Surgical resection
 - BRAF/MEK inhibitor x 40 weeks

Findings

Primary endpoint	Proportion with a pathologic complete response	49%
Secondary endpoint	Grade 3-4 adverse events	29%

Long, et al. Lancet Oncology 20.7 (2019): 961-971.

NeoCombi trial limitations

- Small sample size
- Despite impressive complete pathologic response rate...
 - Significant short-interval recurrence (57% = 20/35 patients)
 - 8 of 20 patients (40%) recurred within the first year
 - 12 of 20 patients (60%) recurred after first year
 - 55% of these recurrences were local and/or regional
- No predictors of which patients:
 - Achieve a pathologic complete response
 - Develop recurrence

Long, et al. Lancet Oncology 20.7 (2019): 961-971.

Even one dose of immunotherapy helps

Study design

- Single institution, Phase Ib trial
- 27 patients, stage III/IV resectable melanoma
- One dose of neoadjuvant pembrolizumab
- Surgical resection
- Post-op pembrolizumab x 1 year

Findings

- Major or complete pathological response in 30% of patients (8 of 27)
- Decrease in tumor diameter via PET after 3 weeks
- Detectable immune response in blood:
 - 3 weeks after the single pre-op dose
 - 1 week after the single preop dose

Huang, et al. Nature Med 25.3 (2019): 454-461.

Are 2 neoadjuvant IO agents better than 1?

Study design

- Single institution, Phase II trial
- 23 total patients, randomized to:
 - Arm A: Neoadj nivolumab
 Arm B: Neoadj ipi + nivo
- All patients: surgical resection + adjuvant nivolumab

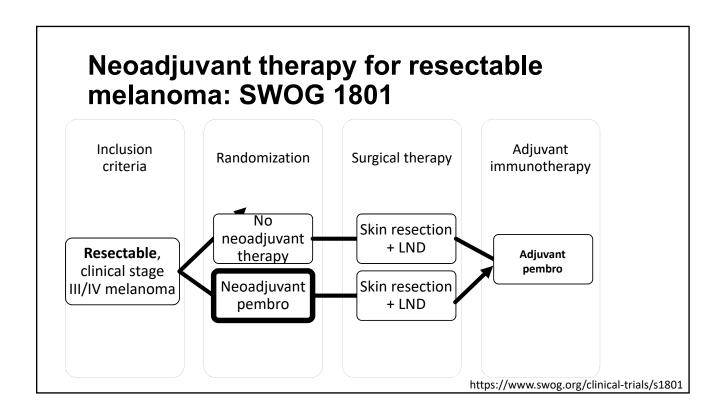
Findings

	Overall response	Pathologic complete response	Treatment related adverse events
Arm A	73%	45%	73%
Arm B	25%	25%	8%

 Toxicity concerns contributed to premature trial conclusion

Amaria, et al. Nature Med 24.11 (2018): 1649-1654.

Long-term outcome after neoadjuvant immunotherapy


Study design

- Single institution, retrospective
- 59 patients (2011-2018) immunotherapy and resection
 - 18 (31%) adjuvant immunotherapy
 - 41 (69%) neoadjuvant immunotherapy
- Patients well-balanced in preop features

Findings

- No difference in disease-free survival
- Adjuvant therapy associated with worse 3-year disease-free survival vs pathologic response to neoadjuvant therapy
 - Adjuvant group: 31%
 - Neoadjuvant group: 73%
 - Hazard ratio 1.19, p=0.02

Song, et al. Ann Surgical Oncology (2020): 1-12.

Challenging case #2

- 56 year old Hispanic woman
- 2015 melanoma of the right 5th toe diagnosed, s/p partial toe amputation
- Several months later, a right groin mass is excised
- 3 months later, the mass recurs
 - Core needle biopsy confirms metastatic melanoma
 - No other sites of disease

Nodal response

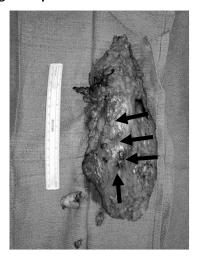
Started pembrolizumab June 2017

Finished pembrolizumab + Imlygic Oct 2018



Foot response

Initial



After therapy

Operative findings

Inguinal specimen

Incision

Pathology report

- A. Right foot, fifth toe, amputation:
- Prominent melanophage deposition and fibrosis involving dermis and subcutaneous adipose tissue, consistent with tumor bed changes.
 - No viable melanoma is identified.
 - Mature bone uninvolved by tumor.
 - Margins uninvolved by tumor bed.
- B. Skin and lymph nodes, right inguinal, excision:
- Prominent melanophage deposition and fibrosis involving six of seventeen lymph nodes, dermis, and

Long-term follow-up

Initial

After therapy

2 years after presentation

Intent of metastasectomy

- Curative intent
 - For patients with limited disease, and limited candidacy for systemic therapy
 - BRAF wild-type patients
 - Transplant patients
 - Patients treated with underlying autoimmune disease
- Palliative intent

Isolated ocular melanoma metastasis

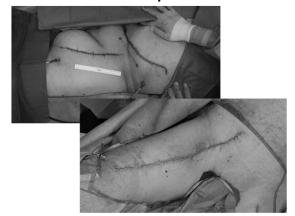
- 67 year old woman
- 2016: pigmented lesion, left eye
- 2017: s/p ¹²⁵I plaque therapy
- 2020: surveillance imaging shows liver lesion, biopsy proves metastatic melanoma.
- s/p robotic resection, home on POD #1.
- No post-discharge narcotics

Rationale for palliative metastasectomy

- Provide analgesia
- Provide wound control
- Relieve intestinal obstruction or bleeding
- Only modality remaining after extensive pre-treatment
- The only modality that can make a patient a candidate for systemic therapy
- Isolated site of disease following effective therapy

Role for metastasectomy

- Single institution retrospective study
- 2,353 patients with metastatic melanoma
 - Two eras
 - 1967-2007
 - 2008-2015
- 45.2% underwent metastasectomy
- Proportion of patients undergoing resection higher in current era vs previous era (54.5% vs 44.7%, p=0.02)
- Patient selection is important
 - Age
 - · Single-organ involvement

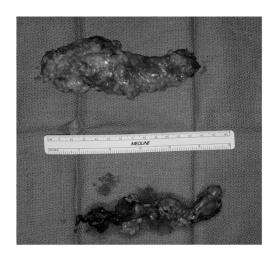

Nelson, et al. Ann Surg Onc 26.13 (2019): 4610-4618.

Why is metastasectomy successful?

- Improved imaging improves patient selection
 - Contrast-enhanced CT and MRI
 - · PET imaging
- Multidisciplinary melanoma care
 - Communication and coordination is essential
 - Has the patient exhausted all standard therapies and clinical trial options?
- Improved anesthesia techniques, enhanced recovery after surgery
- Minimally invasive approaches
 - Laparoscopic, robotic

Surgical approach matters

Standard technique


Minimally invasive technique

Robotic inguinal lymphadenectomy

Endoscopic LND specimens

Inguinal LND specimen

Iliac/obturator LND specimen

Summary

- Neoadjuvant therapy has an increasing role in patients with resectable Stage III/IV melanoma
- The two main classes of neoadjuvant therapies are BRAF/MEK inhibition and immunotherapy
- The optimal neoadjuvant regimen is yet to be defined
- There is a role for surgical resection in patients with Stage IV melanoma
 - Curative intent
 - Palliative

