

Bladder Cancer

Debasish Sundi, MD

Assistant Professor, Department of Urology Urologic Oncology, James Cancer Hospital Ohio State University Comprehensive Cancer Center The Ohio State University Wexner Medical Center

MedNet21

Speaker Background - Surgeon/Scientist

- Surgery patients with cancers of the bladder, kidney, and prostate
 - Open radical cystectomy
 - Robotic radical cystectomy
 - Open radical nephrectomy
 - Robotic partial nephrectomy
 - Robotic radical prostatectomy
- Immunotherapy laboratory researcher
 - Bladder cancer

Background and Contact Information

- MD: Northwestern
- Urology residency: Johns Hopkins
- Urologic Oncology fellowship: MD Anderson Cancer Center
- Email: D.Sundi@osumc.edu
- Twitter: @DebSundi

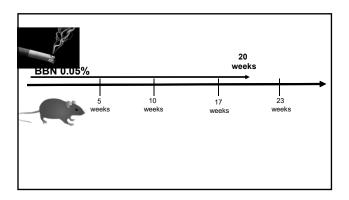
Disclosures

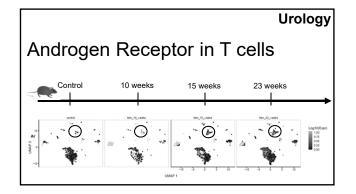
Department of Defense Career Development Award

Naren Patel Genitourinary Research Fund

The Ohio State University Comprehensive Cancer Center Laboratory Startup

Consulting/Honoraria:

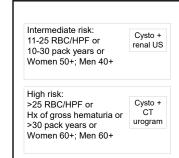

Research Square


Janssen

Arquer

SurvivorNet

How are we increasing our knowledge of how immune cells interact with bladder cancers?



80,000 incident cases/yr (U.S.) 6th most common cancer type 4:1 male:female incidence 5th most common cancer in males The most \$\$\$ cancer to treat per patient per lifetime Smoking is the #1 environmental risk factor

#1 Warning sign: Hematuria

Gross hematuria: immediately refer to urology for flexible cystoscopy; order CT Urogram – this will completely evaluate the lower (bladder) and upper urinary tracts (ureters, renal pelvises)

Microhematuria: what to do? It depends. Fortunately robust guidelines exist (AUA/SUFU)

Microhematuria: 3 or more RBC per HPF If symptoms of UTI, culture and treat Consider risk factors: Anyone at intermediate or high risk needs a cystoscopy

Case

- In January 2019, a 62 year old man was referred to the urologic oncology clinic because he was diagnosed with cT1 HG urothelial carcinoma of the bladder
- What does that mean?
- What do we need to do?

Tumor stage

■ T1-4 can be based on size and/or depth of invasion

T stage:	T1	T2	Т3	T4
Bladder	Involves only	Invades	Invades fatty	Invades other
cancer	the urothelium	muscular	layer	organs in
(based on	(epithelial cell	backing of	surrounding	pelvis
depth of	layer lining the	bladder	bladder	(prostate,
invasion)	bladder or the	(muscularis	(perivesical fat)	rectum,
	underlying	propria)		vagina, pelvic
	'lamina propria'			floor muscles)

Tumor grade

■ Refers to how aggressive the cancer cells look (microscope)

← Low grade

← **High** grade

Bladder cancer N stage

■ N0-3 clinical (radiographic) assessment of lymph nodes

N stage:	N0	N1	N2	Т3
		1 cancer involved lymph node in true pelvis (external iliac, internal iliac, obturator)	Cancer involved lymph nodes in true pelvis (external iliac, internal iliac, obturator)	Cancer involved common iliac lymph node(s)

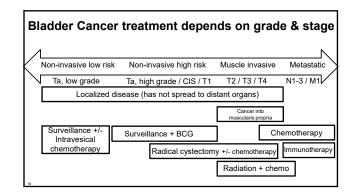
Bladder cancer M stage

■ M0-1

M stage:	MO	M1a	M1b
		Distant lymph node(s) involved (retroperitoneal)	Visceral or bony mets

Is surgery on the table as a treatment option? Rules of thumb...

T1-3 N0 M0	T4 N0 M0	T any N1 M0	T any N0-1 M1
Yes	Maybe (consider adding chemo and/or radiation)	No*	No*

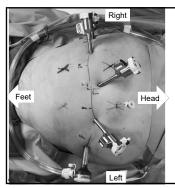

*Exceptions: Sometimes we do perform surgery in patients with metastatic cancers because

Colorectal cancer Breast cancer

Kidney cancer

Back to the case

- My patient. CT scans were performed. Based on negative scans, N0, M0. <u>He is a surgical candidate.</u>
- What does T1 HG urothelial carcinoma of the bladder mean?

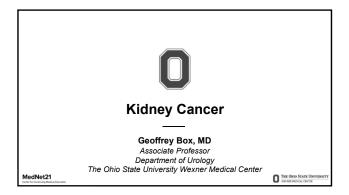

What do we do, doc?

- What are the treatment options?
- 1. Nothing come back in 3 months for cystoscopy
- 2. BCG intravesical immunotherapy once a week washes into the bladder of live bacteria that cause inflammation in the bladder
- 3. Radical surgery cystectomy surgical removal of the bladder, 'wide surgical resection' (radical) that entails removal of regional lymph nodes, and sometimes, also of surrounding organs

What did my patient do?

- 1. Do nothing
- 2. BCG immunotherapy
- 3. Radical surgery (cystoprostatectomy with bilateral extended pelvic lymph node dissection and ileal conduit urinary diversion)

It's aggressive: 12-22% chance of death due to T1HG bladder cancer even after surgery (Kulkarni et al. Eur Urol 2010) Being proactive could be good: cystectomy 1st associated with better survival compared to BCG 1st followed by surgery later if BCG didn't work (Herr, J Urol 2001)


Port Placement

Using Da Vinci Xi docked on patient right and assistant on patient left. Photo orientation: caudal is picture left, cranial is picture right, patient left is picture bottom. The left lateral most trocar is a 12mm AirSeal assistant port. The cranial most trocar in the left upper quadrant is a 5mm assistant port. All other trocars are Xi 5mm robotic trocars, spaced 10cm apart.

Concluding points

- Risk factors for bladder cancer include male sex and smoking
- Gross hematuria → cystoscopy with urology
- Microhematuria in a patient with intermediate or high risk features (AUA/SUFU guideline) → cystoscopy with urology
- Bladder cancer stage and grade determine optimal treatment options
- Email: D.Sundi@osumc.edu
- Twitter: @DebSundi

Kidney Cancer: Outline

- · Epidemiology/Clinical Presentation
- · Renal Mass Evaluation:

 - Imaging
 Role for Biopsy
- Localized Kidney Cancer Treatment Surveillance, Ablation, Surgery
- · Advanced/Metastatic disease

Kidney Cancer

- •Kidney Cancer =
- •Renal Cancer =
- •Renal Cell Carcinoma (RCC)

Kidney Cancer

Kidney Cancer 2022

- 79,000 new cases 13,920 deaths
- Peak incidence 5th-7th decades
- Men (50K) > Women (29K)
- Lifetime Probability of Developing Renal Cancer:
 1 in 46 male (#6)
 1 in 79 female (#9)

Risk Factors

- May account for ~40% of cases in US
 Risk increases ~30% for every 5kg/m² increase in BMI
- Tobacco Exposure May account for ~20% of cases
- Hypertension
- Possible chemical links:
 Trichloroethylene (TCE)
 Perfluorooctanoic acid (PFOA or C8)

Clinical Presentation

•80% incidental

- · Flank pain
- · Gross hematuria · Palpable mass

"Classic Triad" <10%

· Microhematuria

· Paraneoplastic syndromes (10-20%)

Renal Mass: Radiographic Assessment

- Ultrasound
- CT
- MRI

Key Point:

• Need to determine enhancement

CT Scan

- Hounsfield Units (HU)
 - Represents the density of tissue
 - Quantitative measurement

Tissue	HU
Bone	+1000
Blood	40
Kidney	30
Water	0
Fat	-50
Air	-1000

Enhancement

- Can only be determined if a contrast agent is used:
 - CT: lodinated contrast
 - Enhancement =
 - · Pre-contrast → Post-contrast change in Hounsfield Units: >20
 - MRI: Gadolinium
 - Perceptible increase in signal intensity after contrast
 - > 15% signal intensity increase

CT Scan

- Triple Phase (Renal Mass Protocol)
- Pre-contrast
- Post-contrast (nephrographic phase: ~90 sec)
- Delayed (10 min)

Tumor Size and Pathology

Tumor Size (cm)	Renal Cancer	Benign*	High Grade
≤2.0	75%	25%	4%
2.1-3.0	80%	20%	5%
3.1-4.0	84%	16%	25%

*Oncocytoma and AML - 75%

J Urol 2006; 176:896

Kidney Cancer: Evaluation

- Detailed H&P
- Laboratory Evaluation: U/A, BMP (Ca++), LFTs, CBC
- - CXR (Chest CT only if large tumor)
 - Bone Scan and/or Brain MRI if clinically indicated
 - No role for PET scan in RCC
- · Lung, Bone, Liver most common sites for metastasis at presentation

Renal Cell Carcinoma: Presentation and Survival

Stage at Diagnosis	Distribution	5-yr Survival
Localized	66%	93%
Regional (lymph nodes)	16%	71%
Distant (metastatic)	14%	14%

Seer Database. American Cancer Society. Cancer Facts & Figures 2022

Renal Cell Carcinoma: <u>Histologic Subtypes</u> Type: Clear cell Papillary Chromophobe Oncocytoma Freq (%): 75 15 5 5

Hereditary Renal Cell Carcinoma

Disease	Gene (chromosome)	Histology	Frequency
von Hippel-Lindau	VHL (3)	Clear Cell	75%
HLRCC*	FH (1)	Papillary Type 2	10%
Birt-Hogg-Dube	BHD (17)	Chromophobe/Oncocyto ma	10%
Hereditary papillary RCC	Met (7)	Papillary Type 1	5%

*HLRCC = Hereditary Leiomyomatosis Renal Cell Carcinoma

R	ena	Cell Carcin	oma:	STAGI	NG
	Stage	<u>T</u> umor	Lymph Nodes	<u>M</u> etastasis	5 yr Survival
آ_امدانده ا	I	T1 (≤7cm) T1a: ≤ 4cm T1b: >4cm but ≤ 7cm	N0	M0	95%
Localized—	II	T2 (>7cm) T2a: >7cm but ≤ 10cm T2b: >10 cm	N0	M0	88%
	ш	T1 or T2 T3 (vein/fat) T3a: venous/fat T3b: IVC ↓ diaphragm T3c: IVC ↑ diaphragm	N1 N0 or N1	М0	59%
	IV	T4 (outside Gerota's) Any T	Any N Any N	Any M M1	20%

RCC Prognostic Factors

- ·Stage most important
- Grade (1-4)
 - Grade 1 & 2 more favorable.
- Histologic sub-type
 - Papillary type 1 and Chromophobe more favorable
- · Molecular biomarkers investigational

Treatment Options · Active Surveillance Needle Ablation (≤ 3cm) Cryoablation Radiofrequency Ablation Microwave Ablation **Surgical Excision** Gold Standard Radical Nephrectomy Partial Nephrectomy · Renal cell carcinoma does NOT respond to standard

chemotherapy or radiation*

Role for Renal Mass Biopsy

- Historically, renal masses have not been biopsied.
- Indications:
 Confirm diagnosis and histologic subtype in patients with metastases or unresectable lesions
 - Non RCC tumor suspected (metastatic/lymphoma etc→ extremely

 - Confirm diagnosis when it would change treatment:
 Prior to ablative therapy
 Risk adapted management would be considered
 High surgical risk, baseline CKD, solitary kidney

Active Surveillance

- · Candidates:
 - Tumor characteristics:
 - Small size (<3 cm)
 - Tumor growth <5 mm/yr
 - Predominately cystic mas

- · Patient characteristics:

 - · Patients with significant comorbidity unfit for surgery

Very low metastatic risk: ~2%

• Life expectancy <5 years

Renal Mass Needle Ablation

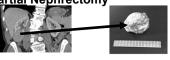
- Potential for less morbidity/complications
- Appropriate Candidates for Ablation:
 - Solid renal masses ≤ 3cm
 - Location matters→ posterior peripheral tumors away from important structures ideal
 - · Renal insufficiency
 - Ablation has less impact on renal function
 - Older/comorbid patients who are not good surgical candidates
- Potential for similar efficacy to partial nephrectomy for select masses
 Recurrence rates higher after ablation

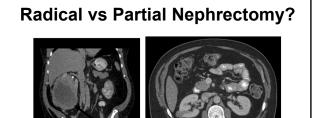
Ablative Modalities

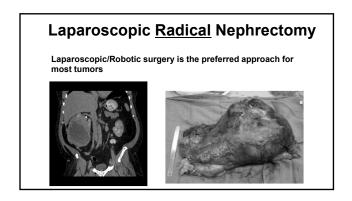
- · Radiofrequency Ablation (RFA)
- · Cryoablation

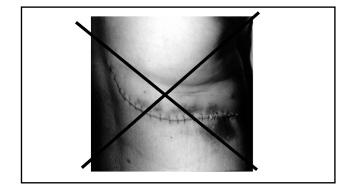
- Microwave Ablation
- Typically performed percutaneously with image guidance (CT or U/S).
- · Outpatient procedure

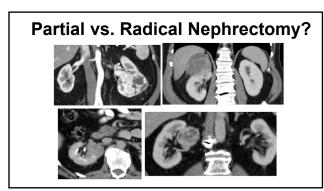
Percutaneous Cryoablation




Surgical Excision


■1) Radical Nephrectomy

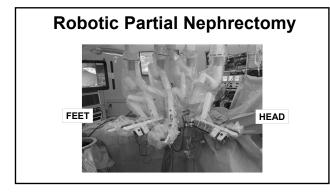


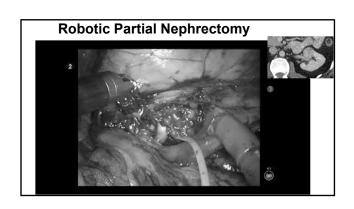

2) <u>Partial Nephrectomy</u>

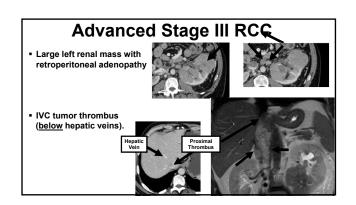
Indications for Partial Nephrectomy

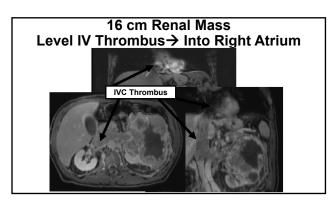
- Absolute/Imperative: To prevent anephric state
 - Anatomic/Functional solitary kidneyBilateral RCC
- Relative: Contralateral kidney is threatened by local, systemic, genetic conditions that may affect function
 - DM, HTN, stones, VHL
- Elective: NSS with a normal contralateral kidney

RENAL TUMOR CONSIDERATIONS


- 1) Partial nephrectomy (PN) oncologically equivalent to radical nephrectomy (RN)
- 2) Partial nephrectomy has ↓ risk of Chronic Kidney Disease (CKD)
- 3) Significant morbidity (CV events/death) associated with CKD (GFR<60)
- 4) Surgical CKD ≠ Medical CKD
 - Surgical CKD is stable
 Medical CKD is progressive
- 5) PN has a ↑ risk of complications
- 6) Robotic PN equivalent to Open PN with ↓ morbidity


Robotic Partial Nephrectomy

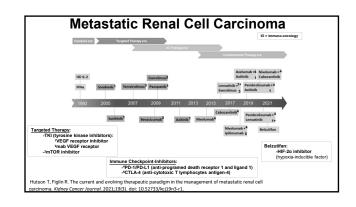

Robotic Partial Nephrectomy



Advanced Disease • Surgery remains an integral part of the management of advanced RCC: • Tumor thrombus in IVC • Regional Lymphadenopathy • Adjacent organ involvement • Resectable oligometastatic disease

Adjuvant Treatment

· High risk patients after tumor resection.


• Sunitinib & Pembrolizumab are FDA approved.

Inclusion Criteria -pT2 High Grade -≥pT3 -pTN+ -M1 NED within 1 yr -Clear Cell

• Keynote 564 (Pembro X 1 yr):

<u>Disease Free Survival @ 24 months</u> -Pembro: 77.3% -Placebo: 68.1%

Overall Survival @ 24 months -Pembro: 96.6% -Placebo: 93.5%

Cytoreductive Nephrectomy (CN)

- Nephrectomy in the setting of metastatic disease
- · Historically shown to improve overall survival
- Newer agents more active against RCC
- Recent RCT Trials question historical practice:
 - CARMENA

Median Overal Survival (n=450):

→Nephrectomy + sunitinib: 13.9 mo
→Sunitinib alone: 18.4 mo

• SURTIME Median Overal Survival (n=99):

→Immediate CN: 15.0 mo
→Sunitinib → Deferred CN: 32.4 mo

JAMA Onc 2018; 5:164

Cytoreductive Nephrectomy

- What do we do in 2022?
- Patient selection is key→ minimize time off systemic treatment
 - Consider upfront cytoreductive nephrectomy:

 - Good performance status/surgical candidate
 Low Volume, Oligometastatic mRCC (esp if lung only)

 - Others get upfront systemic therapy
 Ongoing trials to answer the role of CN in current era.

Metastatic RCC			
Risk*	Preferred**		
Favorable- Clear Cell	 Axitinib + Pembrolizumab Cabozantinib + Nivolumab Lenvantinib + Pembrolizumab 		
Poor/Intermediate- Clear Cell	- Axitinib + Pembrolizumab - Cabozantinib + Nivolumab - Ipilimumab + Nivolumab - Lenvantinib + Pembrolizumab - Cabozantinib		
Non Clear Cell October 1			
	*IMDB Risk Model **NCCN 2022 Guidelines		

Metastatic RCC

- · Immunotherapy based combination therapy
 - Objective response rates as high as 71%1
 - Median overall survival as long as 4+ years²
 - Complete response rates as high as 16%1

¹NEJM 2022; 384:1289 ²ESMO Open. 2020;5:e001079

CONCLUSION

- Kidney cancer represents a large spectrum of disease
- Most solid renal masses represent renal cell carcinoma but there is a role for biopsy in selected cases
- Most surgery can be performed in a minimally invasive fashion (laparoscopic/robotic)
- Partial nephrectomy should be prioritized when technically feasible.
- Changing paradigms with adjuvant treatment & cytoreductive surgery
- Major advances have occurred with treatment of metastatic RCC.