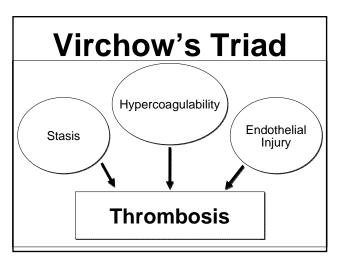

#### Pulmonary Thromboembolism

James Allen, MD



#### Epidemiology of Pulmonary Embolism

- 1,500,000 new cases per year in the United States
- Often asymptomatic
- 300,000 deaths per year
- DVT or PE present in 10% of ICU patients
- Untreated mortality is 25%




#### **Clinical Case**

- 18 year old woman
- Recently started oral contraceptives
- Syncope, dyspnea, & chest pain
- In ED:
  - ✓BP = 96/50; HR = 120
  - √pO2 = 62 on room air
  - √CXR = normal

### Why Did She Clot?





#### **Venous Stasis**

- Immobility
- Bed rest
- Surgery
- Pregnancy
- Cor pulmonale

#### Heritable Hypercoaguability

- Factor V Leiden mutation
- Prothrombin G-A20210 mutation
- Hyperhomocysteinemia
- Protein C deficiency
- Protein S deficiency
- Anti-thrombin III deficiency
- Elevated factors VIII, IX, & XI

#### **Endothelial Injury**

- Previous DVT
- Trauma
- Surgery
- Femoral venous catheters

#### **Factor V Leiden**

- Causes resistance to activated protein C
- 4% of Americans are heterozygotes
- Contributes to about 20% of DVT/PE
- Heterozygotes = 5-10 fold increased risk
   ✓ plus OCPs = 35 fold increased risk
- Homozygotes = 80 fold increased risk

### The Genetic Epicenter of Factor V Leiden



### Prothrombin G-A20210 Mutation

- Causes increased prothrombin levels
- Contributes to about 14% of all DVT/PE
- Heterozygotes = 3 fold increased risk
   heterozygote + factor V Leiden = very
   high risk
- Homozygotes = very high risk

### United States Racial Distribution of Factor V Leiden

- 5.3% Caucasian Americans
- 2.2% Hispanic Americans
- 1.2% African Americans
- 1.2% Native Americans
- 0.4% Asian Americans

#### Hyperhomocysteinemia

#### Causes

- Genetic
- Poor nutrition
- Renal insufficiency
- Malignancy
- Hypothyroidism
- High animal fat diet

#### **Drug causes**

- Methotrexate
- Phenytoin
- Carbamazepine
- Theophylline

### Acquired Hypercoaguability

- Hyperhomocysteinemia
- Anti-phospholipid antibody
- Malignancies
- Estrogens
- Heparin-induced thrombocytopenia

### Thrombocytopenia and Heparin

#### Non-Immune

- Platelets > 100,000
- Days 1-5 of heparin
- Not thrombogenic

#### **Immune**

- Platelets fall by > 50% (usually < 100,000)</li>
- Between day 5-14 of heparin
- Highly thrombogenic

### Anti-Phospholipid Antibodies

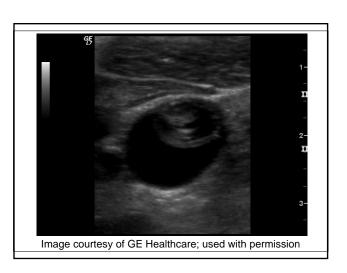
#### **Associated Conditions**

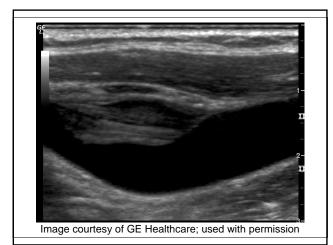
- •SLE
- Sjogren's
- Rheumatoid arthritis
- Systemic sclerosis
- •HIV
- Syphilis

#### **Associated Drugs**

- Phenytoin
- Oral contraceptives
- Phenothiazines
- Hydralazine
- Procainamide

### Heparin-induced Thrombocytopenia


- When <u>suspected</u>, discontinue all heparin pending HIT study
- Initial treatment = argatroban or lepirudin
- Long-term (3-6 month) coumadin


#### Deep Venous Thrombosis Diagnosis

- Duplex ultrasound
  - ✓ Sensitivity & specificity = 99%
  - ✓ Accuracy best for femoral DVT
- Impedance plethysmography
- Venography
- CT scanning
- MRI









#### **Pulmonary Embolism**

#### **Symptoms**

- Dyspnea 80%
- Pleurisy 70%
- Cough 50%
- Hemoptysis 30%

#### **Signs**

- Increased A-a gradient 95%
- Tachypnea 92%
- Tachycardia 44%
- Fever 43%

#### **Calf Vein Thrombosis**

- 20% propagate into popliteal vein
- Anticoagulation necessary if propagate
- Safest approach is to treat all cases
- Serial duplex ultrasounds if anticoagulation is risky

#### Well's Criteria for PE

3.0 Signs of DVT

1.5 HR > 100

1.5 Immobilization for > 3 days or surgery in past 4 months

1.5 Previous PE

1.0 Hemoptysis

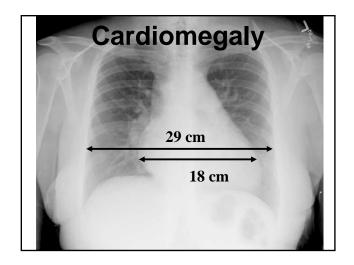
1.0 Malignancy

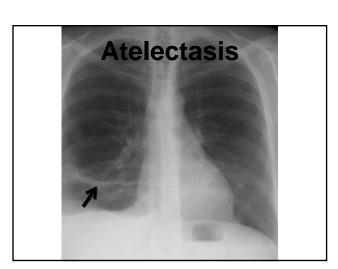
3.0 PE as or more likely than other diagnoses

**Probability** 

<2 Low

2-6 Intermediate


>6 High


Thromb Haemost. 2000;83:416-20

#### **Chest X-Ray Findings**

- Cardiomegaly
- Enlarged pulmonary artery
- Atelectasis
- Elevated hemidiaphragm
- Regional oligemia
- Pleural effusion
- Hampton's hump







#### D-Dimer In Pulmonary Embolism

- Negative test is strong evidence against DVT/PE in patients with low clinical suspicion
- False negatives can occur (especially in cancer)
- False positives are frequent
- Only validated for outpatients

### Ventilation Perfusion Scan

- Still the best initial test for <u>some</u> patients
- Most valuable if normal
- Clinical decision making requires:
  - √V/Q scan probability
  - ✓ Clinical probability

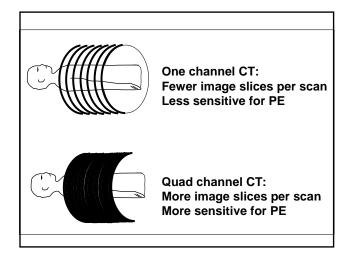
#### **Troponin I**

- Elevated in 30-50% of moderate to large PE
- Correlates with embolism size and worse outcome

# Ventilation/Perfusion Scan Normal ventilation scan ventilation scan scan Perfusion scan showing pulmonary embolus Perfusion scan showing resolved pulmonary embolus

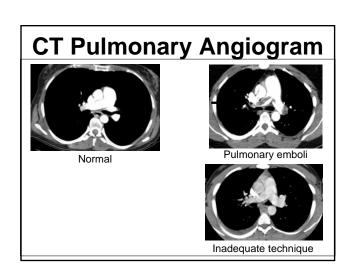
| Probability of Pulmonary Embolus |              |             |                              |     |
|----------------------------------|--------------|-------------|------------------------------|-----|
|                                  |              | Cli<br>High | nical Suspic<br>Intermediate |     |
| Probability                      | High         | 96%         | 88%                          | 56% |
| _                                | Intermediate | 66%         | 28%                          | 16% |
| Ø/                               | Low          | 40%         | 16%                          | 4%  |

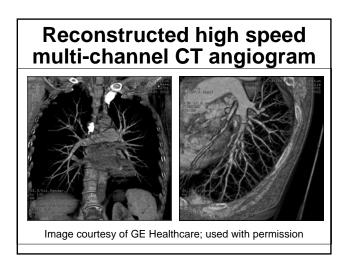
| Probability of<br>Pulmonary Embolus |              |             |                              |     |
|-------------------------------------|--------------|-------------|------------------------------|-----|
|                                     |              | Cli<br>High | nical Suspic<br>Intermediate |     |
| robability                          | High         | 96%         | 88%                          | 56% |
| <b>△</b>                            | Intermediate | 66%         | 28%                          | 16% |
| ×                                   | Low          | 40%         | 16%                          | 4%  |
| IAMA 1990; 2                        | 63:2753-9    |             |                              |     |

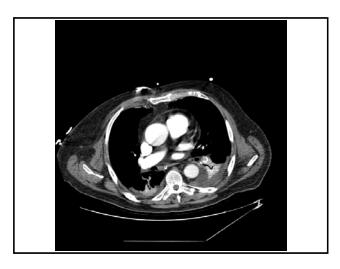

| Probability of<br>Pulmonary Embolus |              |             |                              |     |
|-------------------------------------|--------------|-------------|------------------------------|-----|
|                                     |              | Cli<br>High | nical Suspic<br>Intermediate |     |
| robability                          | High         | 96%         | 88%                          | 56% |
| ₫                                   | Intermediate | 66%         | 28%                          | 16% |
| ۸/۵                                 | Low          | 40%         | 16%                          | 4%  |

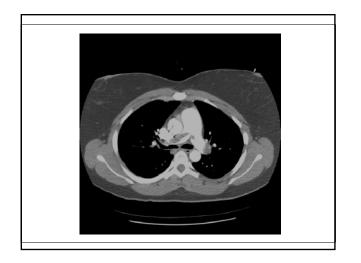
|             |              | Clinical Suspicion |              |     |
|-------------|--------------|--------------------|--------------|-----|
|             |              | High               | Intermediate | Low |
| Probability | High         | 96%                | 88%          | 56% |
|             | Intermediate | 66%                | 28%          | 16% |
| δ×          | Low          | 40%                | 16%          | 4%  |

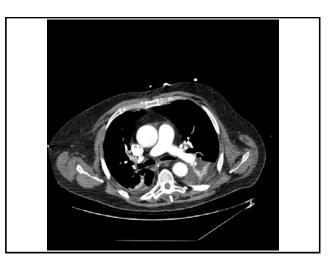
#### Pulmonary Angiogram


- "Gold standard"
- Usually performed following V/Q scan
- Relatively low complication rate
- False positives rare



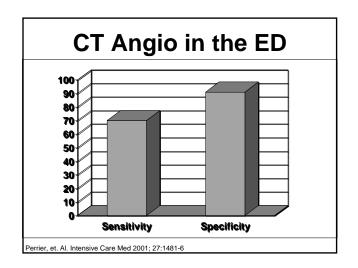


### CT Pulmonary Angiogram


- Specificity about 90%
- Sensitivity about 80%
- Optimal study requires:
  - ✓ Recent generation CT scanner
  - √Technician experience
  - ✓ Radiologist experience



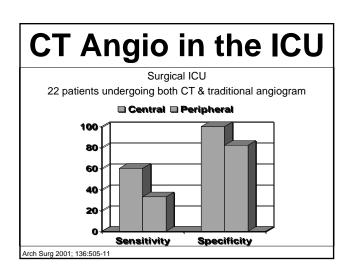









#### **Probability Of True PE**


|                      | High<br>Clinical<br>Suspicion | Medium<br>Clinical<br>Suspicion | Low Clinical<br>Suspicion |
|----------------------|-------------------------------|---------------------------------|---------------------------|
| CTPA/CTV<br>Positive | 96%                           | 90%                             | 57%                       |
| CTPA/CTV<br>Negative | 18%                           | 8%                              | 3%                        |

N Engl J Med 2006; 354:2317-27



#### **PIOPED II Conclusions**

- CTPA should not be used alone
- CT venogram may be useful with CTPA except in:
  - ✓ Pregnant women
  - ✓ Patients under 40
- CTPA positive in main or lobar arteries more accurate than CTPA positive in segmental arteries



#### Typical CT-PA in the ICU



#### **Practical Use Of CT-PA**

- If clearly positive = PE present
- If negative:
  - √Low clinical suspicion = no PE
  - ✓Intermediate or high clinical suspicion = additional testing

#### **CT Angio Conclusions**

- Specificity is good
- CT misses 20-30% of pulmonary emboli in outpatients
- CT misses up to 50% of PE in ICU patients

#### What Rules Out PE?

- Normal V/Q scan
- Low clinical suspicion and D-dimer less than 500 ng/ml
- Low probability V/Q and D-dimer less than 500 ng/ml
- Negative CT-PA plus negative LE duplex
- Low/intermediate probability V/Q and low/moderate clinical probability and either Ddimer < 500 ng/ml or serial duplex ultrasounds</li>
- Normal angiogram

#### What does NOT rule out PE? If the clinical suspicion is high:

- Low probability V/Q scan alone
- Negative CT-PA alone
- Normal D-dimer test
- Negative MRI

#### Sometimes the best test is the one that you can do

#### So, what is the best initial test?

- CT scan:
  - ✓ Previous PE
  - ✓ Significant underlying lung disease
- V/Q scan:

  - ✓Dye allergy ✓Renal insufficiency ✓?Patients with normal CXR
- **Duplex ultrasound:**
- ✓ Pregnancy ✓ Patients with transportation risks
- **D-dimer** 
  - ✓ Low risk outpatients

#### **Predictors of worse** outcome

- Shock
- Severe hypoxemia
- Elevated troponin I
- BNP > 90
- RV dysfunction by echo

#### Pulmonary Embolism Treatment

- Heparin
- Low molecular weight heparin
- Fondaparinux
- Coumadin
- Thrombolytics
- IVC filters
- · Catheter extracation/fragmentation
- Surgical embolectomy

#### **Heparins**

- DVT
  - ✓ Low molecular weight heparin or unfractionated heparin
  - ✓ Outpatients or inpatients
- PF
- ✓ Low molecular weight heparin
- ✓ Unfractionated heparin in:
  - Renal failure (creatinine clearance less than 25 ml/min)
  - Morbid obesity (greater than 150 kg)
  - Most ICU patients
- ✓ Inpatients only

### "Shoot first, ask questions later"



#### **Heparin Dosing**

- Bolus with 80 u/kg
- IV infusion of 16-18 u/kg
- Check PTT Q6 hrs until stable, then QD
- Keep PTT 60-105 seconds\*
- Check platelets every other day
- Minimum 5 day infusion

Appropriate therapeutic range may vary by hospital lab

### Low Molecular Weight Heparins

- Equally or more effective than heparin
- · Equal or less bleeding than heparin
- Lower incidence of thrombocytopenia
- Longer half life
- Monitoring PTT unnecessary
- Problems: renal insufficiency & obesity

#### **Duration of treatment**

- Reversible factor: 3 months
- First idiopathic: minimum of 3 months and consider indefinite therapy
- Second DVT/PE: indefinite anticoagulation

#### Coumadin

- Start on day #1 of heparin
- Initial dose = 10 mg
- •Keep INR 2.0 3.0
- Genetic testing may help guide dosing in the future

### Thromboembolism in cancer

- Patients can clot through coumadin
- Use minimum of 6 months heparin or low molecular weight heparin

### D-dimer predicts recurrence

- 608 patients with venous thromboembolism treated > 3 months
- 233 had elevated D-dimer after treatment
- Patients randomly assigned to anticoagulation or no treatment



N Engl J Med 2006; 355:1780

#### Inferior Vena Cava Filters

- Indications:
  - √ Contraindication to anticoagulation
  - ✓ Failure of anticoagulation
  - √ Complications of anticoagulation
- Complications:
  - ✓ Recurrent PE = 2.4%
  - ✓Occlusion = 3.4%
  - ✓ Doubled risk of recurrent DVT

### Anticoagulants on the horizon:

- <u>Idraparinux</u> once weekly subcutaneous anticoagulant not requiring INR monitoring and recently found to be as effective as coumadin
- <u>Rivaroxaban</u> oral anticoagulant not requiring INR monitoring and recently found to be superior to low molecular weight heparin for short term DVT prophylaxis

\*Neither are currently approved by the FDA

#### **Upper extremity DVT**

- Initial therapy: heparin (low molecular weight or unfractionated)
- Long term treatment with coumadin as per DVT

### Mortality of Pulmonary Embolus

• Untreated: 25%

Heparin Treated: 2%

### Heparin vs. Thrombolytics In Pulmonary Embolism

|                | Heparin<br>Alone | Thrombolytics |
|----------------|------------------|---------------|
| Uncomplicated  | X                |               |
| Shock          |                  | X             |
| Resp. Failure  |                  | Х             |
| RV Dysfunction | ?                | ?             |
| High Troponin  | ?                | ?             |

### Complications of Thrombolytics in Pulmonary Embolus

- Cerebral hemorrhage 1.2%
- Major bleeding 6.3%

Arcasoy SM. Chest 1999; 115:1695-1707

#### **Other Treatments**

#### Surgical embolectomy

- Mainly if thrombolysis is contraindicated
- 20-30% operative mortality

#### Catheter techniques

- Clot removal
- Clot fragmentation
- 28% mortality

Bottom Line: Pulmonary embolism is a medical disease in most patients

## The Key to Improving Mortality from PE is to Prevent PE

### The new world of pay for performance

- 1. Your prophylaxis record will be publicly reported
- 2. Failure to prevent = failure to get paid

### DVT/PE Prevention Strategies

- SQ heparin
- · Low molecular weight heparin
- Adjusted dose coumadin
- Pneumatic compression stockings
- Fondaparinux

### So, what can we do in our practices?

- Prophylaxis, prophylaxis, prophylaxis
- High degree of suspicion
- Remember: the CT-PA is <u>NOT</u> a perfect test
- Avoid femoral venous catheters
- Don't miss HIT

#### Clinical Case Outcome

- Cardiac echo = no RV dysfunction
- Prothrombin gene mutation (heterozygous)
- Treatment
  - √Heparin x 5 days
  - ✓ Coumadin for 6 months
  - ✓ No future oral contraceptives