
Common Fractures

Diane L. Gorgas, MD
Associate Professor & Residency Director
Department of Emergency Medicine
The Ohio State University

Finger

MALLET FINGER(Baseball Finger)

- Avulsion of Extensor Digitorum Communis (EDC) Tendon from DIP joint PITFALL – get the films
 - Can be associated with Avulsion Fracture

Common Fractures

- Distal Upper Extremity
 - Fingers, Hand, Wrist
- Proximal Upper Extremity
 - Humerus, Shoulder, Clavicle
- Proximal Lower Extremity
 - Hip, Femur
- Distal Lower extremity
 - Knees, Ankle, Feet

Finger

MALLET FINGER

- Mechanism of Injury:
 - Direct jam
 - Forced flexion
 - Dorsal dislocation of PIP
 - Laceration
- Splint
 - Slight hyperextension for 6 weeks
 - Night splint for additional 6 weeks
 - Best results if treated early

Jersey Finger

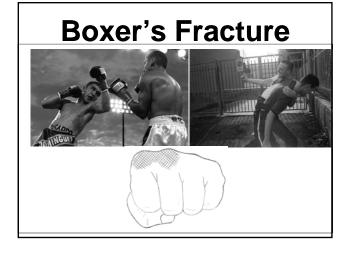
Finger

JERSEY FINGER

- Avulsion injury of Flexor Digitorum Profundus (FDP) from volar base of distal phalanx
- Examination:
 - •FDP test blocked flexion of DIP
- Treatment early surgical repair
- Permanent disability if missed

Jersey Finger

- A pop or rip felt in the finger at the time of the injury
- Pain when moving the injured finger and the inability to bend the last joint
- - Tenderness, swelling and warmth of the injured finger
- - Bruising after 48 hours
- Occasionally a lump felt in the palm of the finger


Neuro Hand Sensation ulnar radial median

Boxer's Fracture

DEFINITION

- Distal neck fx of 5th metacarpal
 - Volar displacement acceptable to 45 degrees for office casting +/- closed reduction
 - Rotation deformity
 - Referral
 - More than minimal valgus or varus displacement
 - Referral
 - PITFALLS missing a fight bite

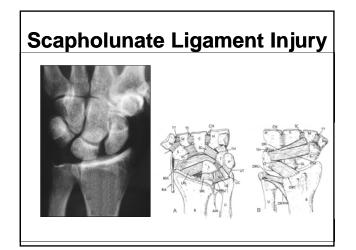
Metacarpal Bones

BENNETT'S FRACTURE

- Intra-articular fx at base of 1st metacarpal
- · Wide displacement due to pull of FPL
- Fragment held in place by strong ligament

Thumb Immobilization

• Thumb Spica Splinting



Wrist & Hand Injuries

- Scapholunate Ligament Injury
 - Most common and most crucial ligament injury of wrist.
 - Often leads to chronic pain and/or functional instability.

PITFALL - Only looking for fractures

Wrist Injuries

- · Scaphoid fractures
 - Most common carpal bone injury of wrist.
 - Can be radiographically occult PITFALL splint
 - Can lead to avascular necrosis of scaphoid if unrecognized.

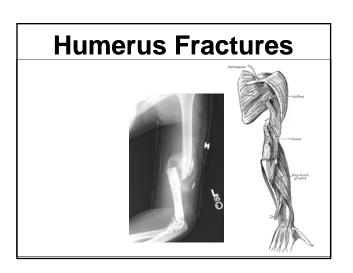
Wrist Injuries

- Triquetral Fractures
 - Second most common fracture
 - PITFALL not looking at Lateral film

"Wrist" Injuries

 Distal radius/ulna injury patterns
 Colle's fractures
 Smith's fractures (reverse Colle's)
 PITFALL- R,M,U disruption 8%

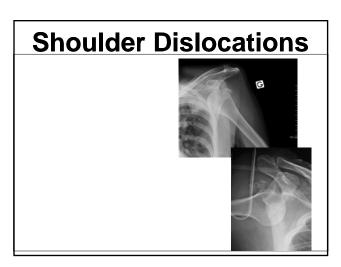
Supracondylar Fracture

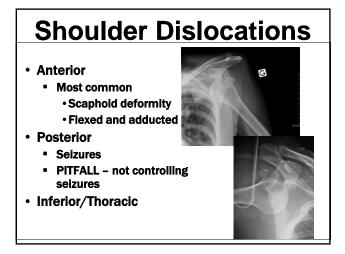

- Mechanism: fall on flexed elbow
- PITFALL;
 - median nerve injury
 - Brachial artery injury

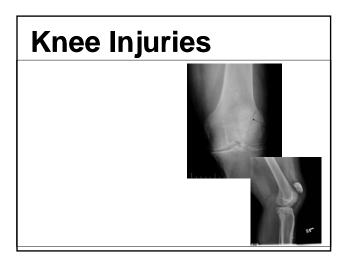
Elbow Fractures

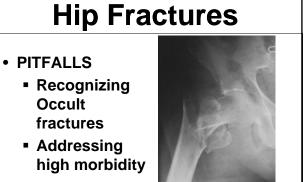
- Radial Head Fracture
 - Sail Sign
 - PITFALL-
 - No boney abnormality, no fracture

Humerus Fractures


- PITFALL Radial Nerve
- Transection
- Neuropraxia




Clavicle Fracture


- PITFALLS
 - CHECKING FOR VASCULAR INTEGRITY
 - ASSOCIATED INJURIES
 - SKIN TENTING



Common Knee Fractures

Ankle Fractures

- Bi and Tri malleolar fractures
- Mortis disruption

Mechanism of Ankle Injuury

- Inversion + Plantarflexion= 80% sprains
 - Most commonly involve the Anterior Talofibular Ligament.
- Inversion or Eversion alone
- Landing on unsteady object
- Change of Direction
 - Deceleration associated
- Manual Twisting
 - Wrestling injury

Ankle Fractures

- PITFALL
 - Examining the joint above and below

Proximal 5th Metatarsal Palpation

- Test of 5th Metatarsal Avulsion
 - Occurs most commonly with inversion
 - Peroneus Brevis pulls styloid off of 5th Metatarsal
 - PITFALL Palpate at styloid for pain.
 If positive for pain should X-ray.

Common Fractures in Orthopedics

Michael Quackenbush, DO
Assistant Professor Orthopaedic Trauma
Ohio State University Medical Center

5th Metatarsal Fractures

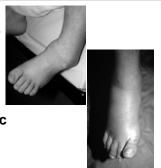
- Jones versus pseudo Jones
 - PITFALL nonreferal of Jones

Adult Common Fractures Objectives

- Recommend an approach to the evaluation of patients who present with a fracture
- 2. Identify operative and non-operative injuries commonly seen in orthopedics
- 3. Describe basic surgical treatment options for fractures
- 4. Understand goals of surgery and what your patients can expect during post operative period

Evaluation

- · Patients age
- History
 - Time of injury
 - Mechanism of injury
 - <u>"What hurts"</u>
- Medical History
- Surgical History
- Social Hx (occupation)
- Medications (anticoagulation)
- Smoking/Alcohol history


Clinical Evaluation

- Need to closely exam the soft tissues around the fracture
- Look for openings in the skin – which may indicate an "open" fracture
- Abrasions? Amount of swelling? Presence of fracture blisters?

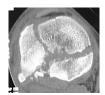
Physical Examination

- Look for deformity
- Palpate areas of tenderness
- Examine the joint above and below
- Detailed neurologic and vascular examination

Clinical Evaluation

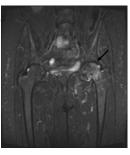
- · Soft tissue care
 - Primary goal is to halt continuing trauma to the tissues
 - Treatment of fractures first begins with "reducing" the fracture or dislocation
 - Immobilizing the fracture with a splint or external fixation

Clinical Evaluation

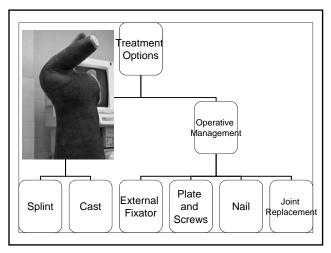

- · Soft tissue care
 - Primary goal is to halt continuing trauma to the tissues
 - Treatment of fractures first begins with "reducing" the fracture or dislocation
 - Immobilizing the fracture with a splint or external fixation

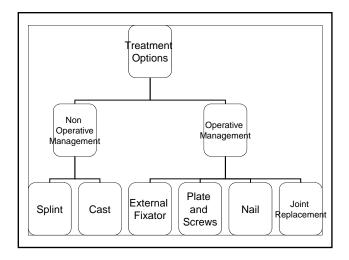
Imaging Studies

- Some instances plain x-rays do not define the fracture well
 - Joint injuries with multiple fragment> CT scan
 - Occult fractures

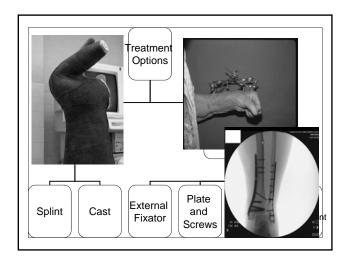


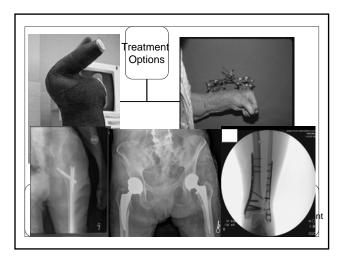
Imaging studies

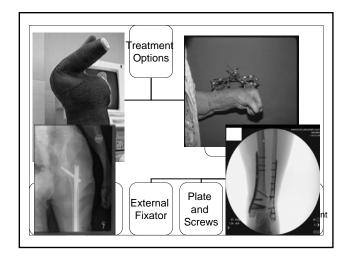

- Radiographic assessment of fractures
- Begins with plain x-rays
 - 2 views at least
 - AP (anteroposterior) and lateral views
 - Joints above and below as some of the energy can be absorbed at a site away from the injury


Special Studies

- Elderly patients with hip pain => MRI can diagnose an occult hip fracture
- Occult Fractures
 - Bone Scan
 - Sensitivity 100% @ 72hrs
 - MRI
 - Sensitive in first 24 hrs







Fractures that require surgical intervention

- "Open" fractures
- Irreducible fractures or dislocations
- Displaced intraarticular fractures

Fracture Healing

- In general all adult fractures take 6-8 weeks to heal with or without surgical intervention
- Some fractures have longer healing times
 - Open fractures
 - Fractures in patients with diabetes
 - Intra-articular (joint) fractures
 - Fractures in bones with poor blood supply (scaphoid, talus, tibia)

Goals of Surgery

- Decrease pain
- Fix fracture/Replace with prosthesis
- · Early return to function
- Early mobility PT/Strengthening/ROM
- Return to work
- · Return to life

Primary Goals

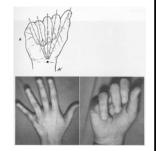
- Immobilize (let soft tissues relax)
- Pain control
- Ice and elevation
- Upper extremity sling
- Lower extremity crutches/walker
- · Urgent orthopedic follow up

Examples of Common Fractures

Metacarpal Fractures

- ~3% of all fractures
- >50% work related
- Less frequent, MVC, recreation, household injuries
- Border digits most common

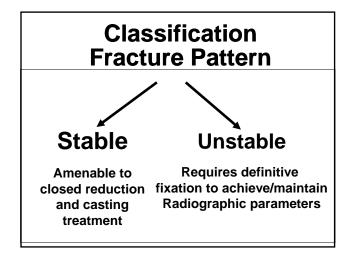
Metacarpal neck fractures


- Extra-articular fxs
 - Some angulation, shortening accepted (more in little/ring, less w/ index/long fingers), but rotation need to be corrected

- · "Boxer's fracture"
 - ulnar gutter splint 10-14 days

Evaluation

- Physical exam
 - Range of motion
 - Rotational deformity
 - Associated softtissue injury
 - Neurovascular examination



Distal Radius Fractures

- Common sites of injuries
- Most common fx of the UE
- 8-17% all bony injuries

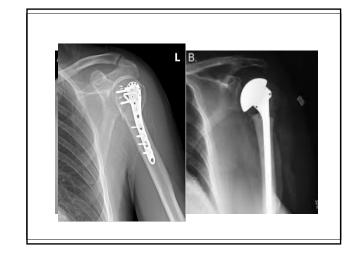
Classification Fracture Pattern

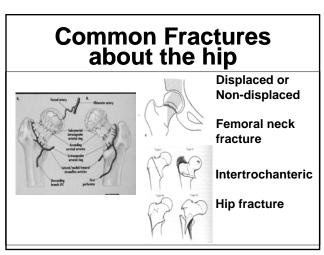


Stable

Amenable to closed reduction and casting treatment

Common Fractures


- Clavicle fractures
 - Vast majority heal with simple immobilization with sling for comfort
 - Begin early range of motion (1-2 weeks)
 - 6-8 weeks back to full activities


Proximal humerus fractures

- 4-5% of all fractures
- Most fxs (80-85%) min displaced
- Bimodal distribution
 - Young high energy injury
 - Older pt, low energy injury, osteoporotic bone

Incidence

- 250,000 Hip Fractures/year
- Double by 2040 to 500,000

Femoral neck fractures

Etiology

- Osteoporosis
- Low energy fall
- 90% >65y/o
- Peak @ 80y/o
- F>M
- High energy fxs
 - More rare

Femoral neck fractures

Femoral neck fractures

Intertrochateric Hip Fractures

Intertrochateric Hip Fractures

Why fix?

- Early mobilization
 - WBAT POD 1
 - Prevents prolonged bedrest
 - Decreased bed sores
 - Decreased pneumonia
 - Decreased pain
- Function
 - 40% Pre-Injury Ambulatory Status

Osteoporos Int. 2000;11(12):1018-23 J Gerontol A Biol Sci Med Sci. 1999 Dec;54(12):M635-40

Fractures around the knee

- Supracondylar / intracondylar distal femur fractures
- Tibial plateau fractures
- "Joint" or "intra-articular" fractures
 - Recommend surgical ORIF for majority of fractures due to joint involvement



Fractures around the knee

- Longer period of NWB (typically 3 months)
 postoperatively due to joint fixation
- Early range of motion to prevent knee contractures

Foot and Ankle Fractures

- Foot and ankle trauma is common
- 25% of all traumatic injuries
- Significant time loss from work
 - Foot required for walking

Nonoperative Treatment

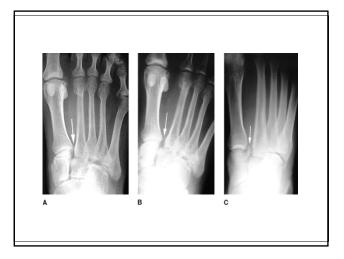
- Indicated for some isolated lateral malleolus fractures
 - WBAT in fracture boot
 - Early ROM exercises / PT
 - Takes ~6-8 weeks to heal

Metatarsal Fractures

- Treatment usually nonoperative
- Symptomatic:
 - Hard shoe
 - Walking cast
 - Elastic bandage

Ankle fractures

- Surgical intervention indicated for
 - Medial malleolus fractures
 - Bimalleolar and trimalleolar fractures
- Patients instructed to be non-weight bearing for 8 weeks after surgery (longer if associated ligmentous injury)
- 3-6 month recovery time



Lisfranc Injuries

- Up to 40% overlooked on initial radiographs
- High index of suspicion
- Xrays may show minimal displacement vs complete disruption

Take Home Points

- Begin with thorough clinical evaluation
- Obtain appropriate radiographs
- Splint/Immobilize
- Patients should be prepared for a "long" recovery time
- Surgery provides early ROM, predictive healing, better functional outcome