New Developments in GI Malignancies

Mark Bloomston, MD
Director, Surgical Oncology Fellowship Program
Associate Professor of Surgery
Division of Surgical Oncology
The Ohio State University

I. Technical Advancements

Developments

-- SIRT

- I. New techniques and procedures
 - EUS -- NOTES
 - Robotics
- II. New approaches to older procedures
 - Staged hepatectomy
 - Portal vein embolization
- III. Evolution of philosophy
 - Expanded indications for hepatectomy
 - The intact primary

Endoscopic Ultrasound

- Diagnosis: good for pancreas
- T stage: esophagus, stomach, rectum
- N stage: able to biopsy
- Cancer therapy

Gene Mediated Cytotoxic Immunotherapy for Pancreatic Adenocarcinoma

- · Phase I clinical trial
 - Arm A: resectable
 - Arm B: locally advanced
- Intratumoral injection of HSVthymidine kinase vector followed by anti-herpetic prodrug in conjunction with:
 - Arm A: surgery
 - Arm B: chemoradiation

Gene Mediated Cytotoxic Immunotherapy for Pancreatic Adenocarcinoma

- 24 patients treated
- Toxicities
 - Grade 3: 5 patients (pain, azotemia)
 - Grade 4: none
- 2 patients on Arm A alive at nearly 2 years
- 6 patients on Arm B alive at 5-34 months

Gene Mediated Cytotoxic Immunotherapy for Pancreatic Adenocarcinoma

- Diagnosis confirmed by EUS
- Virus injected by EUS into tumor followed by 2 weeks of Valacyclovir
- Arm A: surgery with repeat injection of virus into resection bed
- Arm B: repeat intratumoral injection during chemoradiation

NOTES

- Natural Orifice Transluminal Endoscopic Surgery
- No skin incisions
- Useful for identifying occult metastases or obtaining tissue from suspicious lesions

Minimally Invasive Surgery

Data

What difference does it make?

Preoperative Considerations

- · Site of tumor
- Tumor size/invasion
- Obesity
- Previous surgery
- Must be able to find tumor/polyp
- Possibility of converting to open

Laparoscopic Colectomy

- Return of bowel function 1-2 days sooner
- · Less need for narcotics
- · Quicker return of lung function
- Length of stay ~1 day less
- May be influenced by biased expectations

Laparoscopic Colectomy

- · Return to work and quality of life
 - No statistical difference
 - Anecdotally improved
- Cost
 - Equipment costs and OR time are greater
 - May be balanced by shorter hospital stay
- Operative Time 30-60 minutes longer

COST Trial

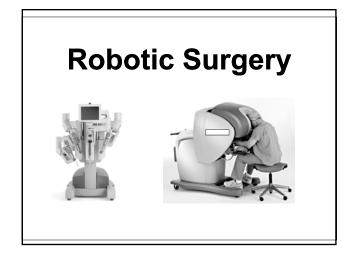
Clinical Outcomes of Surgical Therapy Study Group

- · 5 year data
- · Disease-free 5 year survival
 - 68.4% Open
 - 69.2% Laparoscopic
- · Overall survival
 - 74.6% Open
 - 76.4% Laparoscopic
- Recurrence
 - 21.8% Open
 - 19.4% Laparoscopic

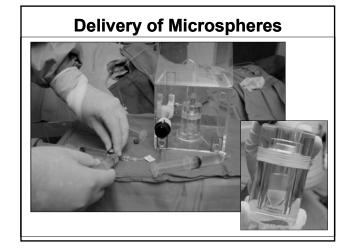
Ann Surg 2007;246:655-64

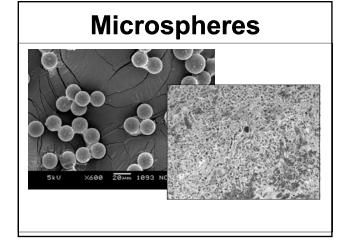
COST Trial

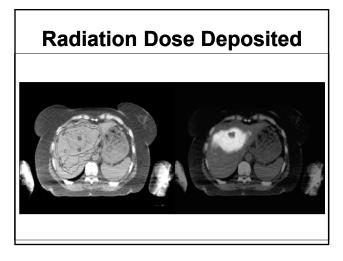
Clinical Outcomes of Surgical Therapy Study Group


- · 872 patients with colonic adenocarcinoma
- Recurrence
 - 16% laparoscopic
 - 18% open
- Survival
 - 86% laparoscopic
 - 85% open
- Post-operative stay
 - 5 days laparoscopic
 - 6 days open

N Engl J Med 2004;350:2050-9






No Surgery?

Selective Internal Radiotherapy (SIRT)

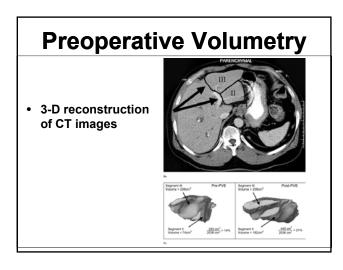
- Radiolabelled particles (Y90)
 - TheraSpheres® MDS Nordion (HCC)
 - SIRSpheres SIRTex (CRC)
- Injected through hepatic artery
- High dose radiation to tumor
- · Low dose radiation to liver
- β particle emission
 - 2-3mm of penetration

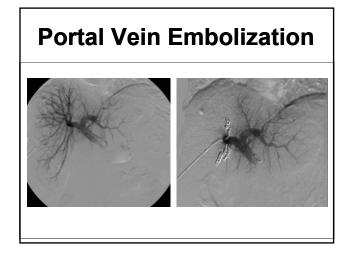
II. New Approaches

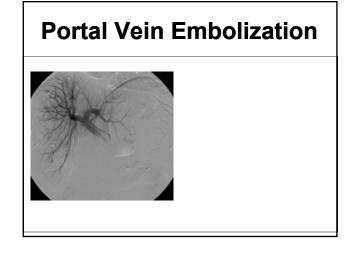
2-Stage Hepatectomy

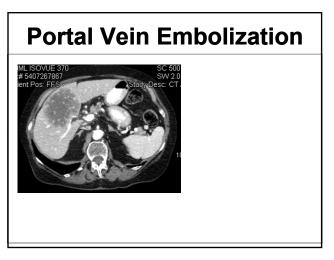
- 33 patients with "unresectable" CRCM
- 1st stage: clearance of left-sided disease
- Right PVE ± segment IV
- 2nd stage (5-8 weeks): major hepatectomy
- · No deaths
- 2 stages completed in 28 (progression in 5)
- 3-yr survival from 2nd stage 54%, median not reached

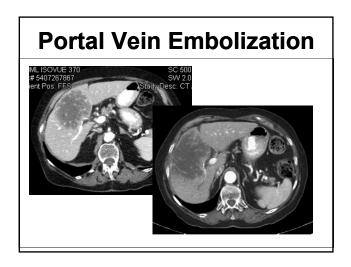
Jaeck et al. Ann Surg 2004

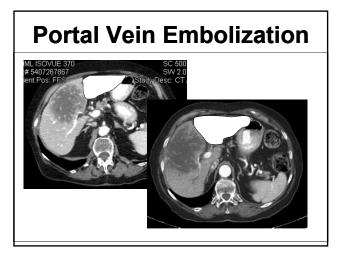

2-Stage Hepatectomy

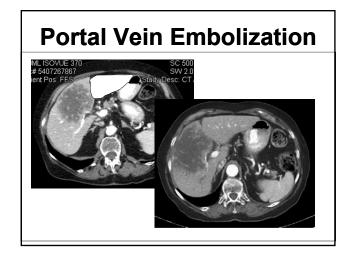

- 16 patients with bilobar disease
- Major resection at 1st stage in 8 (no deaths)
- Chemotherapy pre- and post-operative
- 3 patients progressed (1 intra- and 2 extra-)
- Major resection at 2nd stage in 8 (2 deaths)
- 4 liver recurrences (3rd resection in 3)
- Median survival 31 months from 2nd and 44 months from 1st resections

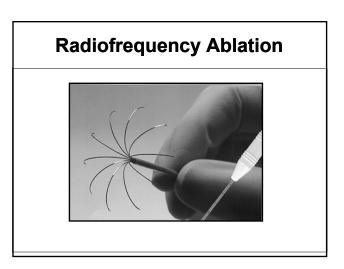

Adam et al. Ann Surg 2000

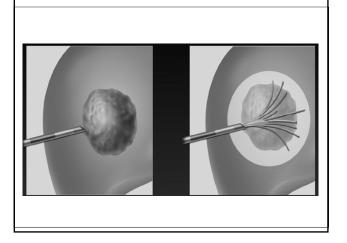

Portal Vein Embolization

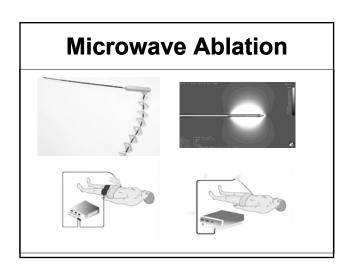

- First described in 1990
- Occlusion of blood flow to all tumorbearing liver
- Hypertrophy of future liver remnant (FLR)
- Atrophy of embolized segments
- Recommended if FLR <20% in healthy liver (<30% if heavily pretreated)



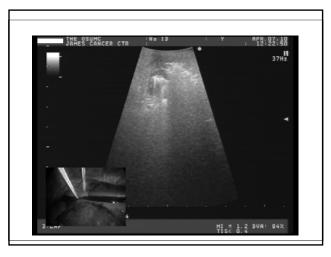






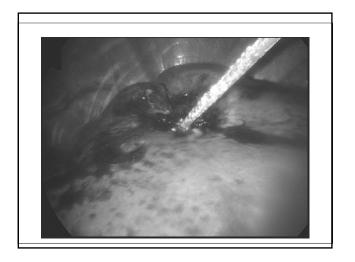


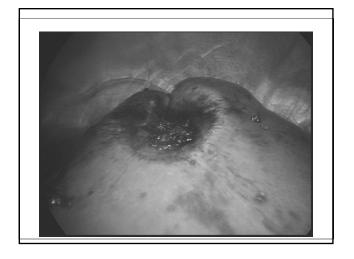
Role of RFA


- Adjunct to resection
- Few, small unresectable tumors
- Unfit patient

RFA

- Limited damage to surrounding liver
- Can be done in OR or radiology
- Limited by tumor size
- User-dependent
- Higher local recurrence rates (vs. resection)
- Efficacy: open > laparoscopic > percutaneous





III. Philosophic Evolution

What does "operable" mean?

- Defined in relative terms
 - Based on expertise, resources, attitude
- "High-risk surgery"
 - Knowledge of internal liver anatomy
 - Operative techniques
- Mortality 20% (1980s) → <5% (2000s)
 "Poor outcomes"
- - Better imaging (spiral CT, MRI, PET, I/O U/S)
 - Better patient selection
 - Better chemotherapy

- Definitions of inoperable disease
 - Bilobar disease
 - >4 lesions
 - Extrahepatic disease
 - Lesion >5 cm
 - Synchronous disease

Bilobar Disease

- Tomlinson et al. 2007
 - Actual 10+ year survivors (N=102)
 - 25% had bilateral disease resected
 - 29% for 2-5 and 5-10 year survivors (P=NS)
- Bolton et al. 2000
 - Simple (N=121) vs complex (N=44) resections
 - 98% of complex had bilobar disease (vs 0%)
 - Similar perioperative mortality (9% vs. 5%)
 - Similar survival (36% 5-yr, median 43 months)

Debunking Dogma

Bilobar Disease

- Fong et al. 1999
 - 1001 resections
 - 40% bilobar disease
 - 5-yr survival 29% vs. 38%
 - Not predictive by multivariate analysis (p=0.4)

- · Definitions of Unresectability
 - Bilobar disease
 - >4 lesions
 - Extrahepatic disease
 - Lesion >5 cm
 - Synchronous disease

Tumor Number

- Pawlik et al. 2006
 - 159 patients with ≥4 lesions
 - Median 5 lesions (4 14)
 - Resection ± RFA in 94%
 - Overall survival: median 62 months, 5-yr 51%
- · Kornprat et al. 2007
 - 98 patients with ≥4 lesions
 - Median 5 lesions (4 15)
 - Overall survival: median 41 months, 5-yr 33%

Traditional Dogma

- · Definitions of Unresectability
 - Bilobar disease
 - >4 lesions
 - Extrahepatic disease
 - Lesion >5 cm
 - Synchronous disease

Traditional Dogma

- Definitions of Unresectability
 - Bilobar disease
 - >4 lesions
 - Extrahepatic disease
 - Lesion >5 cm
 - Synchronous disease

- Definitions of Unresectability
 - Bilobar disease
 - >4 lesions
 - Extrahepatic disease
 - Lesion >5 cm
 - Synchronous disease

SSO/AHPBA/SSAT Consensus

"The presence of extrahepatic disease should no longer be considered an absolute contraindication to hepatic resection provided complete resection of both intra- and extrahepatic disease is feasible."

Extrahepatic Disease

- Elias et al. 2005
 - 308 resections, 84 (27%) with EHD
 - EHD not predictive of survival
 - 5-yr survival 34% vs. 28%
- Kornprat et al. 2007
 - Multiple liver mets, 18% with EHD
 - Predictor of poor outcome
 - Median survival 32 months

Traditional Dogma

- Definitions of Unresectability
 - Bilobar disease
 - >4 lesions
 - Extrahepatic disease
 - Lesion >5 cm
 - Synchronous disease

- Definitions of Unresectability
 - Bilobar disease
 - >4 lesions
 - Extrahepatic disease
 - Lesion >5 cm
 - Synchronous disease

New Rules

- Complete resection a must
 - Negative liver margins
 - All extrahepatic disease
- Preservation of 2 contiguous segments
- Preservation of vascular inflow, outflow, and biliary drainage
- Preservation of adequate future liver remnant (>20% in healthy liver)

The Modern Era of Liver Surgery for CRC Metastases

Asymptomatic Colorectal Primary

- Must resect primary
 - Risk of obstruction
 - Risk of bleeding
 - Nidus for more metastases

Updates On Gastrointestinal Malignancies

Tanios Bekaii-Saab, MD

Medical Director, Gastro-intestinal Cancer Program
Division of Medical Oncology
Department of Pharmacology
OSUCCC – Arthur James Cancer Hospital

Unresected Primary CRC

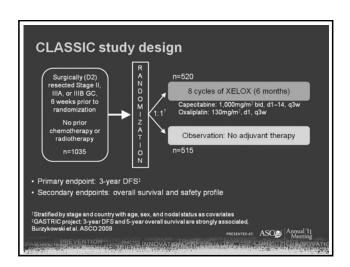
- 233 patients with stage IV CRC and intact primary tumor
- All received modern chemotherapy
- 89% never required intervention
- 7% required emergency surgery
- 4% required other intervention (eg stent)

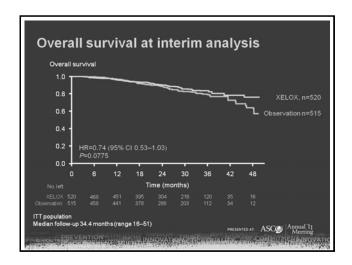
Poultsides et al. JCO 2009

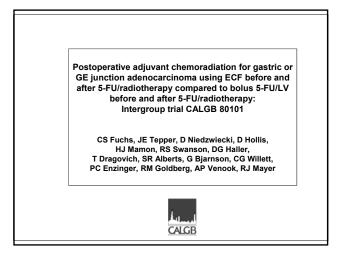
Gastrointestinal Malignancies

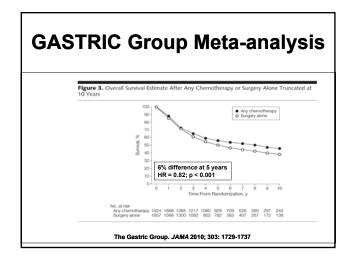
- Lung (1.4 million deaths)
- Stomach (740 000 deaths)
- Liver (700 000 deaths)
- Colorectal (610 000 deaths)
- Breast (460 000 deaths)

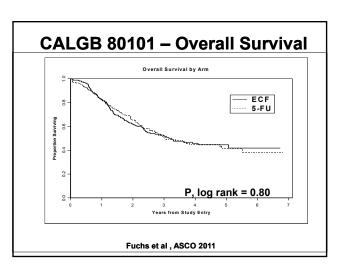
http://www.who.int factsheet N°297 February 2011

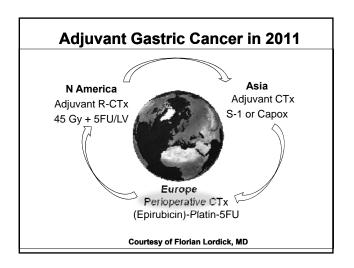

Courtesy of Florian Lordick, MD

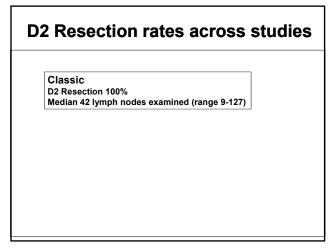

Gastric and Gastro-Esophageal Cancers

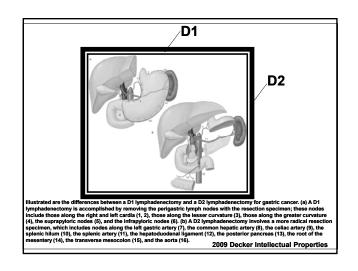

Early Stage Disease

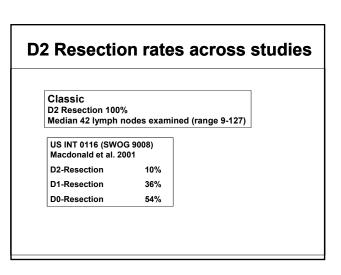

Introduction: Epidemiology


- 35,000 new cases a year with 25,000 deaths
- 3 entities:
 - Squamous cell carcinoma of the esophagus
 - Adenocarcinoma of the distal esophagus, GE junction and proximal stomach
 - Adenocarcinoma of the distal stomach
- Esophageal cancer is the most rapidly growing cancer in the USA and is affecting middle aged Caucasian males mostly. Its incidence rate is 6 times, and its mortality 7 times what it was in the 1970s.









D2 Resection rates across studies

Classic D2 Resection 100% Median 42 lymph nodes examined (range 9-127)

 US INT 0116 (SWOG 9008)

 Macdonald et al. 2001

 D2-Resection
 10%

 D1-Resection
 36%

 D0-Resection
 54%

UK MAGIC
Cunningham et al. 2006
D2-Resection 41%
D1-Resection 19%
Other Resections 40%

What have we learned about localized gastric/GE cancers?

- Surgical approach determines the optimal adjuvant treatment strategy
 - Asia: Radical resection (D2)
 - Adjuvant chemotherapy
 - U.S.: Sub-radical resection (≤ D 1)
 - · Adjuvant chemoradiation
- Awaiting data on adjuvant CRT vs. chemotherapy
 - ARTIST (capecitabine/cisplatin compared with resected gastric cancer with D2 nodal dissection trial - when surgery is controlled, is adjuvant radiation necessary?

What have we learned about localized gastric/GE cancers?

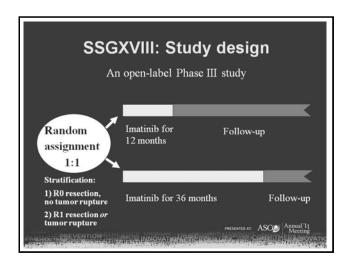
- Surgical approach determines the optimal adjuvant treatment strategy
 - Asia: Radical resection (D2)
 - Adjuvant chemotherapy
 - U.S.: Sub-radical resection (≤ D 1)
 - Adjuvant chemoradiation

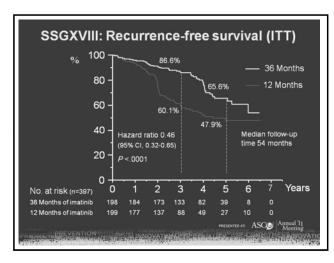
What have we learned about localized gastric/GE cancers?

- Is a neoadjuvant approach feasible and better?
 - Neoadjuvant much more likely to receive therapy (SAKK)
 - EORTC 40954 3 months neoadjuvant chemo trends towards better
 - No randomized neoadjuvant CRT gastric studies reported yet
 - Attempts have been aborted secondary to low accrual

What have we learned about localized gastric/GE cancers?

- Is a neoadjuvant approach feasible and better?
 - Neoadjuvant much more likely to receive therapy (SAKK)
 - EORTC 40954 3 months neoadjuvant chemo trends towards better
 - No randomized neoadjuvant CRT gastric studies reported yet
 - Attempts have been aborted secondary to low accrual
- Data with targeted therapies, more aggressive chemotherapy
 - MAGIC 2 ECF +/- bevacizumab


Gastro-esophageal Cancers : Advanced disease

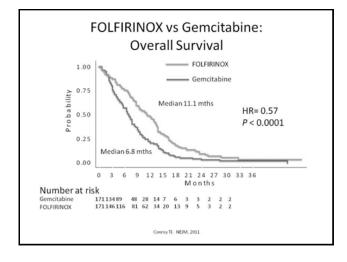

- Marginal differences between doublets and triplets that perhaps do not justify the differences in toxicities.
- Trastuzumab should be considered as an option added to a platinum and 5FU in the presence of Her-2 overexpression
 - LOGIC Trial
 - Rand Ph III, HER 2+ gastric cancer
 - Capecitabine + oxaliplatin +/- lapatinib
- 2nd line Irinotecan has a proven benefit in advanced gastric cancer and should be offered to patients with a PS 0-2 (Park et al Abs 4004, ASCO 2011 and Thuss-Patience P. Eur J Cancer, 2011)

Gastro-esophageal Cancers : Advanced disease

- Marginal differences between doublets and triplets that perhaps do not justify the differences in toxicities.
- Trastuzumab should be considered as an option added to a platinum and 5FU in the presence of Her-2 overexpression
 - LOGIC Trial
 - Rand Ph III, HER 2+ gastric cancer
 - Capecitabine + oxaliplatin +/- lapatinib
- 2nd line Irinotecan has a proven benefit in advanced gastric cancer and should be offered to patients with a PS 0-2 (Park et al Abs 4004, ASCO 2011 and Thuss-Patience P. Eur J Cancer; 2011)

GIST

SSGXIII: Key inclusion criteria Histologically confirmed GIST, KIT-positive High risk of recurrence according to the modified Consensus Criteria*: Tumor diameter >10 cm or Tumor mitosis count >10/50 HPF** or Size >5 cm and mitosis count >5/50 HPFs or Tumor rupture spontaneously or at surgery Fletcher CD et al. Hum Pathol 2002, 33: 459-65 **HPF, High Power Field of the microscope

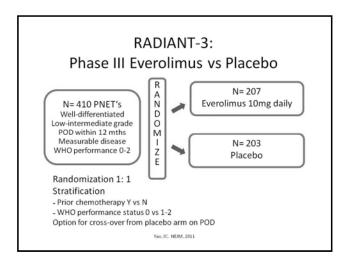

Conclusions: Adjuvant GIST

- 3 years adjuvant imatinib is better than 1 year in high risk patients
 - Well tolerated
 - Cost benefit?

Pancreas Cancer

Conclusions: Pancreas Cancer

- Pancreas cancer has consistently been the most lethal cancer
 - Less than 5% of patients diagnosed with it actually survive it.

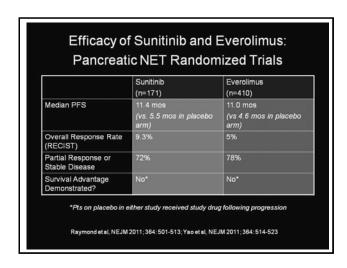


Conclusions: Pancreas Cancer

- Pancreas cancer has consistently been the most lethal cancer
 - Less than 5% of patients diagnosed with it actually survive it.
- Adjuvant:
 - Gemcitabine or 5FU remain the standard for treating patients with resected pancreas cancer based on best Level 1 evidence!!
 - The role of radiation remains unanswered.

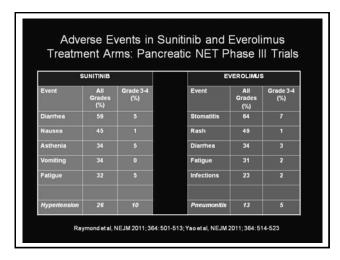
Conclusions: Pancreas Cancer

- Advanced disease (First Line):
 - Gemcitabine combinations remains a SOC for most patients with PS 0-1. Fluoropyrimidines?
 - Novel taxanes seem to hold promise. No role for abraxane in pancreas cancer for now, awaiting phase III studies
 - FOLFORINOX can be considered an option for excellent PS patients with no biliary obstruction?
 - FOLFOX or FOLFIRI?
 - Neo-adjuvant?
 - Confirms the need to move to non-gemcitabine backbones



Pancreas Neuroendocrine Tumors (PNET's)

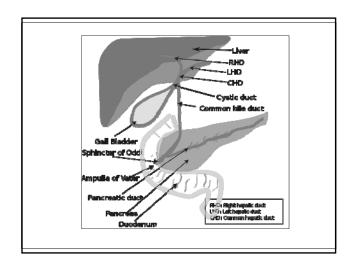
- · Rare malignancies
 - 1.3% of all pancreas malignancies
 - 2-4 per million
 - 1,000 yr new diagnoses US, rising incidence
- Variable natural history, median OS with metastases > 2 yrs
- · FDA drug approvals
 - 1982 Streptozotocin (+/- 5FU, doxorubicin)
 - 1998 Somatostatin (symptomatic NET's)


Yao, JC. Ann Surg Oncol, 2007. Moertel, CG. NEJM, 1980. Jensen, RT. Cancer, 2008

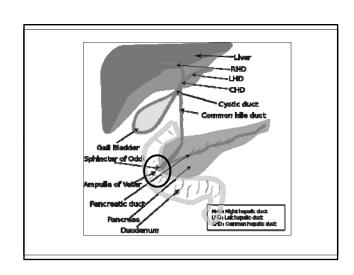
Randomized Phase III Sunitinib vs Placebo **SUN 1111** N= 86 A N N= 171 PNET's Sunitinib 37.5 mg PO daily D Well-differentiated 0 M POD within 2-12 mths Measurable disease ECOG performance 0-1 I Z E N= 85 Placebo Randomization 1: 1, balanced by country/region No other stratification factors used Raymond, E. NEJM, 2011

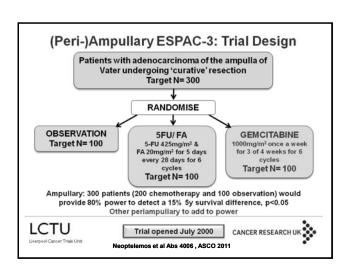
What should the Sequence of Therapy in Symptomatic Pateints with PNET be?

 Initiating targeted therapy is reasonable in most patients with symptoms, clinically significant tumor burden, or PD on chemotherapy

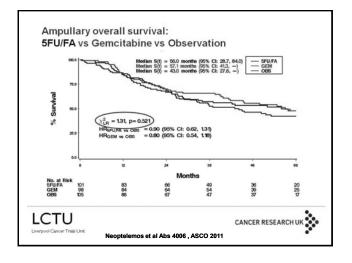


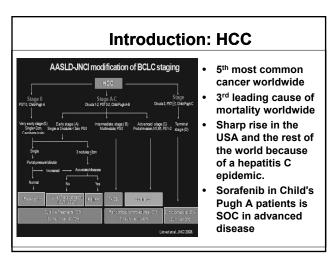
What should the Sequence of Therapy in Symptomatic Pateints with PNET be?

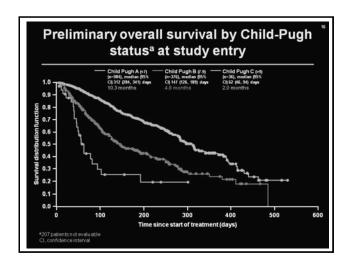

- Initiating targeted therapy is reasonable in most patients with symptoms, clinically significant tumor burden, or PD on chemotherapy
- Streptozocin or TMZ-based therapy considered where tumor response is required or patients had PD on targeted therapy

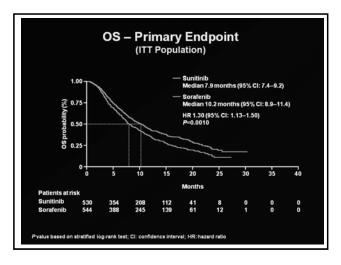

What should the Sequence of Therapy in Symptomatic Pateints with PNET be?

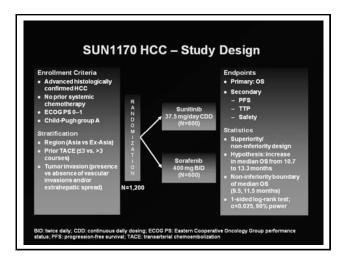
- Initiating targeted therapy is reasonable in most patients with symptoms, clinically significant tumor burden, or PD on chemotherapy
- Streptozocin or TMZ-based therapy considered where tumor response is required or patients had PD on targeted therapy
- Future studies will consider options such as new targets and combination studies.




Ampullary Cancer

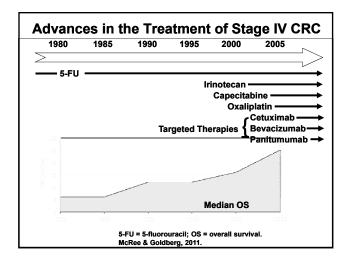


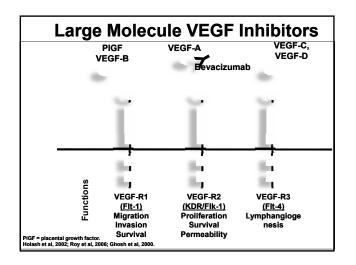


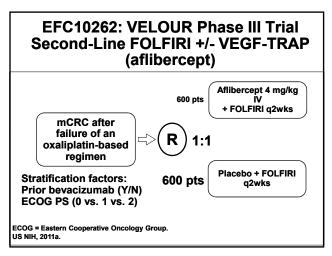

Hepatocellular Cancer (HCC)

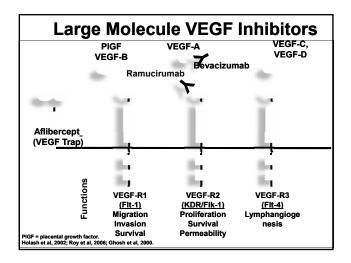
Conclusions: HCC

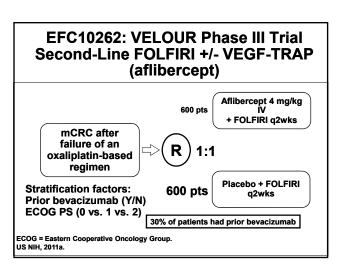
- Sorafenib remains the SOC for treating patients with advanced HCC for patients with Child's Pugh A
 - Sorafenib can be used with relative safety in the C-P B HCC population. Optimal dose remains to TBD.
 - No data in CP-C

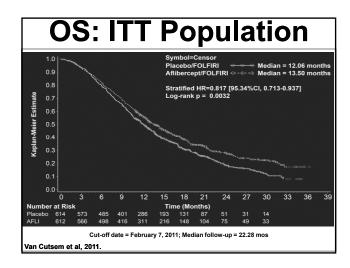

Conclusions: HCC


- Sorafenib remains the SOC for treating patients with advanced HCC for patients with Child's Pugh A
 - Sorafenib can be used with relative safety in the C-P B HCC population. Optimal dose remains to TBD.
 - No data in CP-C
- Sorafenib appears superior to sunitinib for HCC
 - The superiority of sorafenib over sunitnitb in HCV infected patients raises interesting questions about non-VEGFR-related activities of sorafenib


Colorectal Cancer


Conclusions: HCC


- Sorafenib remains the SOC for treating patients with advanced HCC for patients with Child's Pugh A
 - Sorafenib can be used with relative safety in the C-P B HCC population. Optimal dose remains to TBD.
 - No data in CP-C
- Sorafenib appears superior to sunitinib for HCC
 - The superiority of sorafenib over sunitnitb in HCV infected patients raises interesting questions about non-VEGFR-related activities of sorafenib
- A better tolerated VEGFR agent would be welcome
 - Sunitinib does not fill this role
 - Others may, including bevacizumab
 - Studies of brivanib and linifanib vs. sorafenib continue



Safety – Most Frequent AEs, With ≥ 5% Difference in Incidence Between Treatment Arms, Excluding Anti-VEGF Class Events

Safety Population, % of patients	Placebo, N = 605		Aflibercept N = 611	
PT, SOC, HLT*	All Grades	Grade 3/4	All Grades	Grade 3/4
Diarrhea	56.5	7.8	69.2	19.3
Neutropenia**	56.3	29.5	67.8	36.7
Complicated neutropenia		2.8		5.7
Asthenic conditions (HLT)	50.2	10.6	60.4	16.9
Stomatitis & ulceration (HLT)	34.9	5.0	54.8	13.7
Thrombocytopenia**	33.8	1.7	47.4	3.3
Infections (SOC)	32.7	6.9	46.2	12.3
Decrease appetite	23.8	1.8	31.9	3.4
Weight decreased	14.4	0.8	31.9	2.6
Palmar plantar erythrodysaesthesia	4.3	0.5	11.0	2.8
Skin hyperpigmentation	2.8	0	8.2	0
Dehydration	3.0	1.3	9.0	4.3

" PT = prefei ** From lab. Van Cutsom

Safety – Most Frequent AEs, With ≥ 5% Difference in Incidence Between Treatment Arms, Excluding Anti-VEGF Class Events

Safety Population, % of patients	Placebo, N = 605		Aflibercept N = 611	
PT, SOC, HLT*	All Grades	Grade 3/4	All Grades	Grade 3/4
Diarrhea	56.5	7.8	69.2	19.3
Neutropenia**	56.3	29.5	67.8	36.7
Complicated neutropenia		2.8		5.7
Asthenic conditions (HLT)	50.2	10.6	60.4	16.9
Stomatitis & ulceration (HLT)	34.9	5.0	54.8	13.7
Thrombocytopenia**	33.8	1.7	47.4	3.3
Infections (SOC)	32.7	6.9	46.2	12.3
Decrease appetite	23.8	1.8	31.9	3.4
Weight decreased	14.4	0.8	31.9	2.6
Palma AEs leading to trea	tment d	iscontinu	uation:	2.8
Skin r AFL: 26.6%				0
Dehvd PL: 12.1%				4.3

Optimized Medical Therapy of Advanced CRC

- 1. Identify the goal of therapy
 - RR only matters for
 - · Conversion therapy of liver metastases or
 - · If patient is symptomatic from his tumor burden
 - For most patients gain of time and maintaining QOL is more important
- 2. Treat to progression and perhaps beyond?
 - Be mindful about toxicities, stop oxaliplatin before neurotoxicity develops
 - Some select patients can have CFI

CFI = chemotherapy-free intervals. NCCN, 2011.

Optimized Medical Therapy of Advanced CRC (cont.)

- 3. Expose patients to all potentially active agents
 - These agents are the oncologist's tools to keep patients alive
 - Use fluoropyrimidine-based combinations as default backbone, reserve sequential single agent therapy for select patients
- 4. Reutilize chemotherapeutic agents (in different combinations?) in the course of the therapy
 - Continuum of care vs. distinct lines of therapy

NCCN, 2011.