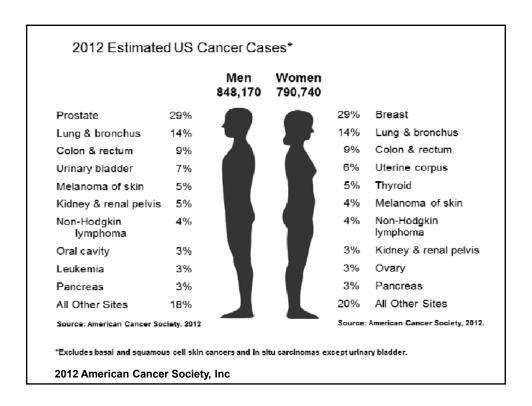

Colon Cancer Treatment

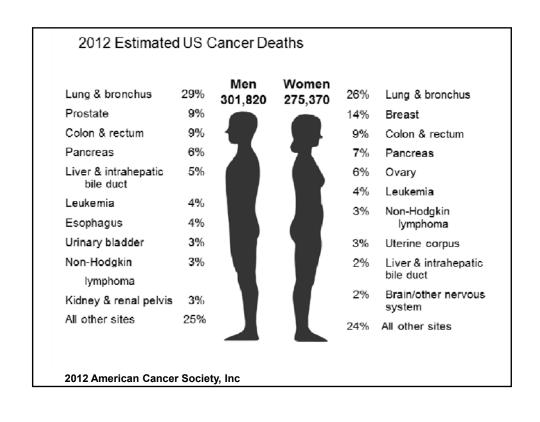
Christina Wu, MD
Division of Medical Oncology
The Ohio State University Wexner Medical Center

Colon cancer

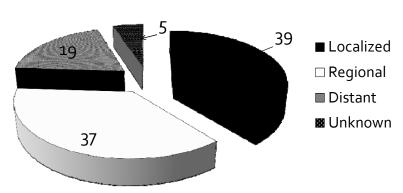
- Incidence
- Risk Factors
- Screening
- Hereditary Syndromes
- Signs and Symptoms
- Diagnostic work-up
- Staging
- Treatment

Colon cancer


Wikimedia Commons


Adenocarcinomas that occur anywhere along the large bowel (ascending, transverse, and descending) into the rectum.

Colon cancer

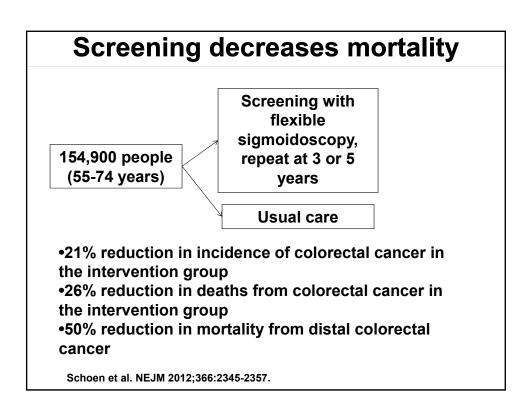


Wikimedia Commons

19 % patients have Stage IV disease on diagnosis 5 year-survival of Stage IV disease is 12%

Altekruse SF, Kosary CL, Krapcho M, et al. SEER Cancer Statistics Review, 1975-2007, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2007/, based on November 2009 SEER data submission, posted to the SEER web site, 2010.

Risk Factors


- Personal or family history of colorectal cancer or adenomatous polyps before age 50
- Inflammatory bowel disease
 - Ulcerative colitis >Crohn's disease
- History of abdominal radiation
- Acromegaly (increased adenomas)
- Familial syndromes
- · High fat and low fiber diets
- Obesity

Protective factors

- NSAIDs
- Exercise
- · High fiber, low fat diet
- Folic acid supplementation
- Vitamin D and calcium

Screening recommendations:

- 90% colon cancer cases occur after age 50
- Starting at age 50:
 - Fecal occult blood test (annually)
 - Flexible sigmoidoscopy (every 5 years)
 - Colonoscopy (every 10 years)
 - Air contrast barium enema (every 5 years)
- If patients are diagnosed with colon cancer, their 1st degree relatives should start having screening colonoscopies 10 years junior to their age at diagnosis or at age 50, whichever occurs earlier.

Hereditary Syndromes

FAP

- Familial adenomatous polyposis (FAP)
- Germline mutation in the adenomatous polyposis coli (APC) gene
- 1% of all colon cancer
- Autosomal dominant
- Patients have hundreds to thousands of colonic polyps, which place them at high risk for mutation into tumors at a young age (45 years)
- Extracolonic tumors: CNS tumors, small bowel cancer, thyroid cancer, pancreatic cancer, gastric cancer pediatric hepatoblastoma

FAP

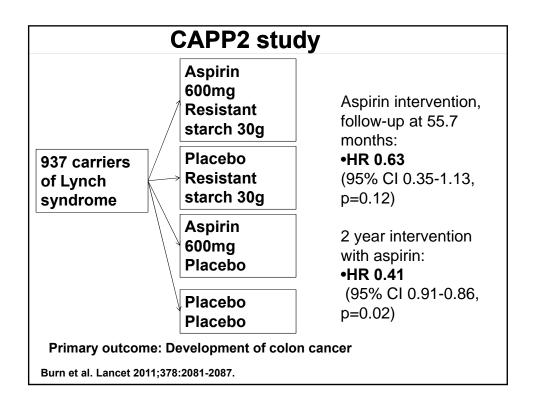
Wikimedia Commons

FAP-Personal history

- <u>Treatment</u>: proctocolectomy or colectomy
- Surveillance:
 - Endoscopic evaluation of remaining bowel
 - Upper endoscopy
 - Annual thyroid exam

FAP- Family history APC gene mutation in family member Detected Not detected Flexible sigmoidoscopy annually starting age 10-15 years Average risk screening

HNPCC


- Hereditary Non-Polyposis Colorectal Cancer (HNPCC) or Lynch syndrome
- Germline mutation in genes involved in mismatch repair enzymes
 - Important in surveillance and repair of errors that occur during DNA synthesis
 - MLH1, MSH2, MSH6, PMS2
- 2-3% of all colon cancer
- Autosomal dominant
- Patients present at young age

Amsterdam criteria for HNPCC

- <u>></u> 3 family members with colorectal cancer (> 2 first degree relatives)
- ≥ 2 successive family generations affected
- Colorectal cancer before age 50 in at least 1 family member
- FAP excluded

HNPCC

- Extracolonic tumors: breast, pancreas, gastric, gynecologic, and genitourinary cancers
- Screening recommendations:
 - Colonoscopy, age 20-25
 - EGD and duodenoscopy, age 30-35
 - Urinalysis, age 25-30
- Consider prophylactic hysterectomy and bilateral salpingo-oophrectomy

Peutz-Jegher syndrome

- Germline mutation of serinine threonine kinase (STK11)
- Autosomal dominant
- <u>Diagnosis</u>: (2 of the following)
 - Freckling at the mouth, lips, fingers, and genitals
 - More than 2 hamartomatous polyps of small intestine
 - Family history
- Extracolonic tumors: breast, ovarian, testicular, pancreas, small intestine, stomach

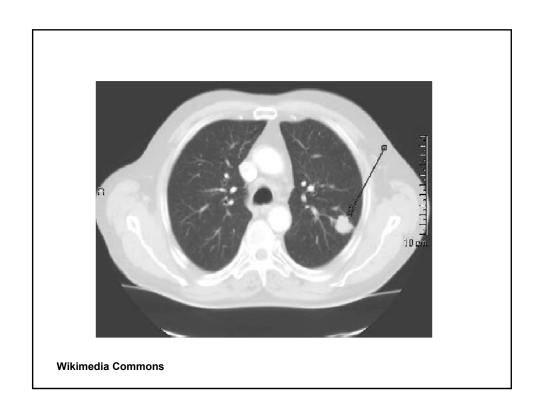
Peutz-Jegher syndrome

http://www.gfmer.ch/genetic_diseases_v2/gendis_detail_list.php?cat3=231

Peutz-Jeghers syndrome

- Surveillance:
 - Mammogram, age 25
 - Upper endoscopy and colonoscopy, late teens
 - Pancreas imaging?, age 25-30
 - Small bowel imaging, age 8-10
 - Testicular exam, age 10
 - Pelvic exam and Pap smear, age 18-20

Signs and symptoms


Signs and Symptoms

- Weight loss
- Fatigue
- Anemia
 - Microcytic ,due to iron deficiency
- Abdominal pain
- Melena
- Rectal bleeding
- Change in bowel movements
 - Constipation or diarrhea

Diagnostic work-up

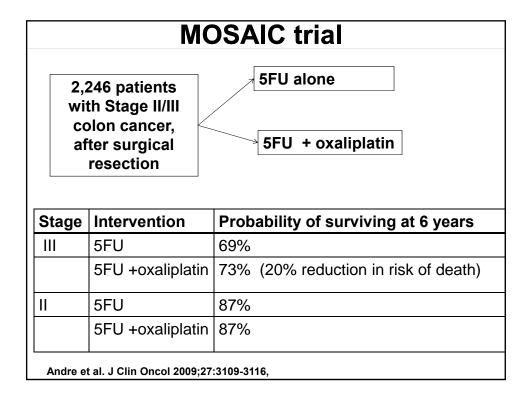
- CBC + differential
- Comprehensive metabolic panel
- Serum CEA
- Colonoscopy with biopsy
- CT chest/abdomen/pelvis
- PET/CT scan

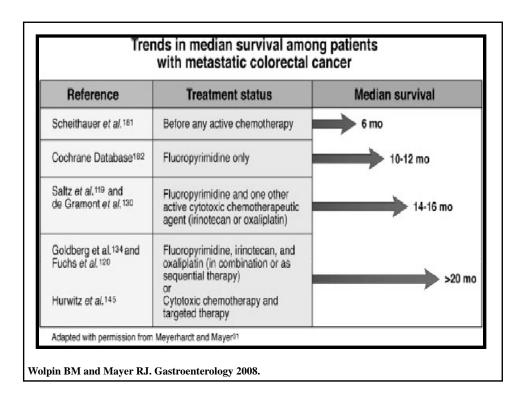
Staging

Stage	Tumor	Node	Metastasis
I	T1-2	N0	MO
II	T3-4	N0	MO
III	Any T	N1-2	MO
IV	Any T	Any N	M1

Staging Affects Survival						
Category	SEER				SEER	
TN	Relative survival, 5-year (%)	SE	TNM stage, 6 th ed	TNM stage , 7 th ed	Observed survival, 5-year (%)	SE
T1N0	97.4	0.6	I	I	78.7	0.5
T2N0	96.8	0.6	I	I	74.3	0.4
T3N0	87.5	0.4	IIA	IIA	66.7	0.6
T4aN0	79.6	1.0	IIB	IIB	60.6	0.8
T4bN0	58.4	1.3	IIB	IIC	45.7	1.0
T1-2N1a	90.7	1.5	IIIA	IIIA	73.7	1.2
T1-2N1b	83.0	2.0	IIIA	IIIA	67.2	1.6
T1-2N2a	79.0	3.6	IIIC	IIIA/IIIB	64.7	3.0
T3N1a	74.2	0.8	IIIB	IIIB	58.2	0.6
T4aN1a	67.6	2.0	IIIB	IIIB	52.2	1.5
	AJCC 7 th edition					

Treatment


- Surgery
- Chemotherapy
- Radiofrequency ablation
- Radiation therapy


Resectable disease

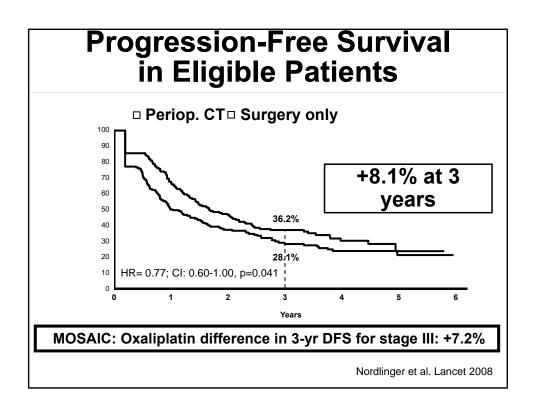
- Stage I
- Stage II
 - High risk: Tumor perforation, lymphovascular invasion, perineural invasion, high-grade histology, <12 lymph nodes sampled
- Stage III (lymph node involvement)

Resectable disease

- Adjuvant chemotherapy
 - Goal: Eradicate micrometastases, reduce the risk of recurrence of cancer and improve survival
- 5-Fluorouracil (5FU)
- Capecitabine (Xeloda)
- Oxaliplatin

Goals in Patients with Advanced Disease

- Resection if possible
- Conversion therapy if initial resection not possible
- Extension of length of life
- Maintenance of quality of life

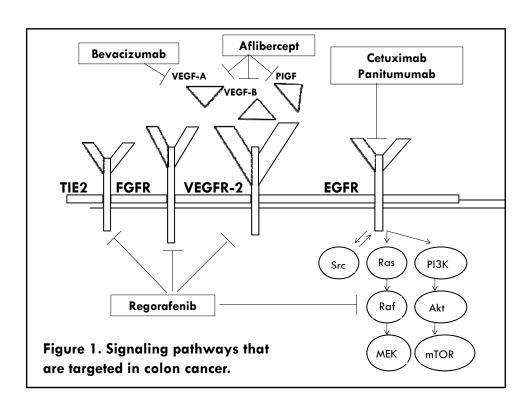

Metastatic disease

- Palliative chemotherapy
 - 5FU or capecitabine
 - Oxaliplatin
 - Irinotecan

- Metastectomy
- Radiation therapy
- •Radiofrequency ablation

- Biologic agents
 - VEGF pathway- bevacizumab, aflibercept
 - EGFR pathway- cetuximab, panitumumab
 - Regorafenib

Peri-operative FOLFOX in Resectable Liver Metastasis FOLFOX4 Surgery FOLFOX4 6 cycles (3 months) 8 cycles (3 months) 1 m=364 patients (09/00-07/04) Nordlinger B, et al. Lancet 2008;371(9617):1007-16.

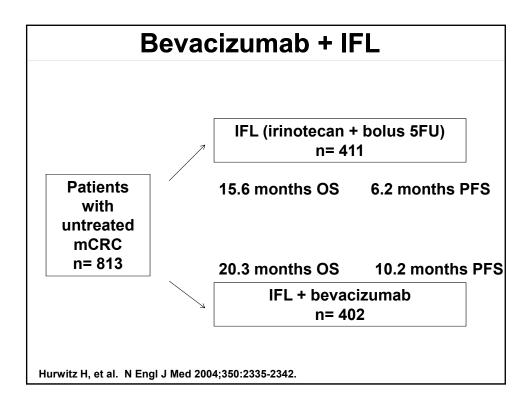


Complications of Chemotherapy

	With chemotherapy	Without chemotherapy
Post-operative complications	25.2 %	16 %
Post-op deaths	1 pt	2 pt

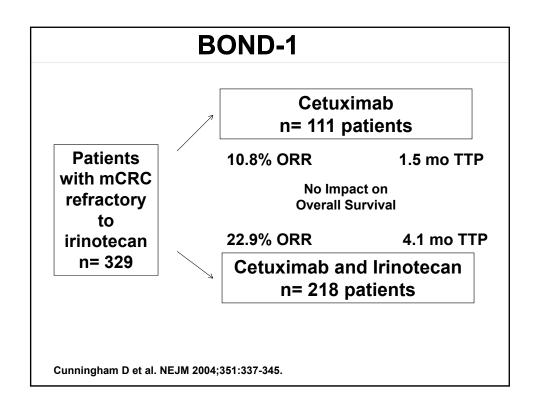
Treatment-Associated Liver Toxicity

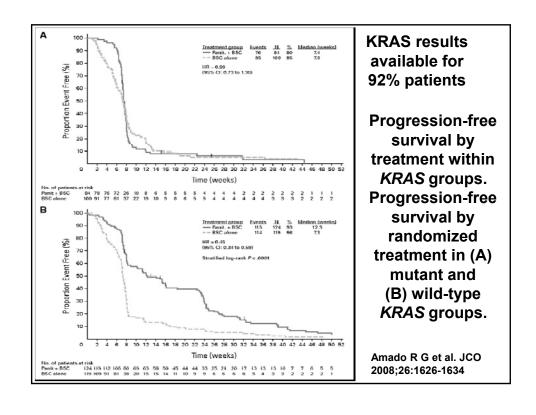
- 5-FU: steatosis
- Irinotecan: steatohepatitis
- Oxaliplatin: sinusoidal/vascular injury
- Bevacizumab
 - Potential wound healing complications
 - Wait 6-8 wks before surgical resection
- · Cetuximab: no known acute/chronic effects
- Incidence of postoperative complications increases with prolonged use



Survival for patients with metastatic colorectal cancer (mCRC)

Treatment	Median survival		
No treatment	6 months		
5-Fluorouracil	10-12 months		
FOLFOX or FOLFIRI	14-16 months		
Chemotherapy and bevacizumab	20-24 months		


Anti-VEGF therapy


- Agents: Bevacizumab or aflibercept
- Administered: intravenously
- Side effects:
 - Hypertension
 - Proteinuria
 - Poor wound healing
 - Bowel perforation
 - Arterial thromboembolic events

Anti-EGFR therapy

- Agents: Cetuximab or panitumumab
- Administered: intravenously
- · Side effects:
 - Hypomagnesemia and hypocalcemia
 - Acneiform rash
 - Tx: Minocycline, hydrocortisone cream, sunblock
 - Hypersensitivity reaction
 - Pulmonary fibrosis

Regorafenib

- Administered: orally
- · Side effects:
 - Hand-foot syndrome
 - Hypertension
 - Diarrhea
 - Hepatotoxicity

In summary, colon cancer...

- 3rd most common cancer
- Screening starts at age 50
- Familial syndromes:
 - FAP, HNPCC, Peutz-Jegher syndrome
- Diagnostic work-up and staging
- Adjuvant chemotherapy to prevent cancer recurrence
- New targeted therapies for metastatic disease

Colon Cancer

Sherif R.Z. Abdel-Misih, MD, FACS **Assistant Professor - Clinical** Department of Surgical Oncology
The Ohio State University Wexner Medical Center

Outline Surgical Treatments

Surgical Dogma

Surgical Advances

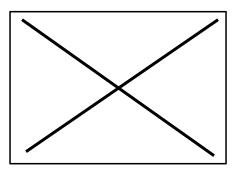
Surgical Treatments

- Primary Tumors
 - Surgical resection remains mainstay of curative therapy
 - Resection
 - Minimally invasive (Laparoscopic, Robotic)
- Metastatic Disease
 - Surgical resection
 - Local therapies
 - Ablation (RFA/Microwave)
 - Regional therapies
 - SIRT (selective internal radiation therapy Y-90)
 - Isolated hepatic perfusion (IHP)
 - Hepatic artery infusion pump (HAIP)
 - Hyperthermic Intraperitoneal Chemotherapy (HIPEC)

Minimally Invasive Surgery

- Technological advances allowed less invasive approaches more feasible
- Requires technical expertise and resources
- Initially questioned quality of oncologic resection and outcomes

Minimally Invasive Surgery (MIS) Considerations


- Tumor Related
 - Location (Right/Sigmoid easier)
 - Size/Invasion
 - Localization
- Patient Related
 - Body habitus
 - Previous surgery
 - Comorbidities

MIS: Conversion to Open

- Occurs in 10-25 % cases
 - Body habitus
 - Prior surgery
 - Inflammation
 - Tumor size
 - Anatomic
- Not surgical failure
- Early conversion preserves outcomes

Benefits of Minimally Invasive Surgery (MIS)

Benefits of New Techniques

Risk/Effects
Of Anesthesia,
Trauma, Etc.

Operative Time

MIS: Data and Literature

- What are the benefits?
 - Return of bowel function (1-2 days earlier)
 - Decreased pain (less narcotics)
 - Length of stay (1 day less)
 - Earlier return to work/activities
 - Expectation bias may play a role

MIS: Outcomes

- Cost
 - Increased OR/time costs
 - ?Balance by shorter hospital stay
- Oncology
 - Are cancer outcomes preserved with MIS?

COST (Clinical Outcomes of Surgical Therapy)

- 872 patients with colon adenocarcinoma
- Recurrence
 - 16% Laparoscopic
 - 18% Open
- Survival
 - 86% Laparoscopic
 - 85% Open
- Hospital Stay
 - 5 days Laparoscopic
 - 6 days Open

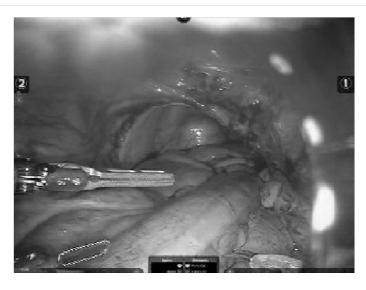
N Engl J Med 2004;350:2050-9

COST Trial (Clinical Outcomes of Surgical Therapy) Trial

- 5 year data
- Disease-free 5 year survival
 - 68.4% Open
 - 69.2% Laparoscopic
- Overall survival
 - 74.6% Open
 - 76.4% Laparoscopic
- Recurrence
 - 21.8% Open
 - 19.4% Laparoscopic
- Replicated in other large trials (CLASICC UK, COLOR European)

MIS: Cosmesis

MIS: Cosmesis



Robotic Surgery Benefits

- Same patient benefits as MIS
- Technical
 - Allows HD 3-D visualization
 - Facilitates fine, precise movement within confined spaces (pelvis, ENT)
- 39 pts Rectal adenocarcinoma
 - Oncologic principles feasible
 - (-) Margins, LN harvest adequate, TME
 - Safe (12.8% morbidity, 0 Mortality)
 - OR time increased (285 min.)
 - Length of stay (median 4 days)

Hellan M. et al. Annals Surg Onc 2007; 14(11):3168-3173

MIS: Robotic Surgery

MIS: Robotic Surgery

MIS: Robotic Surgery

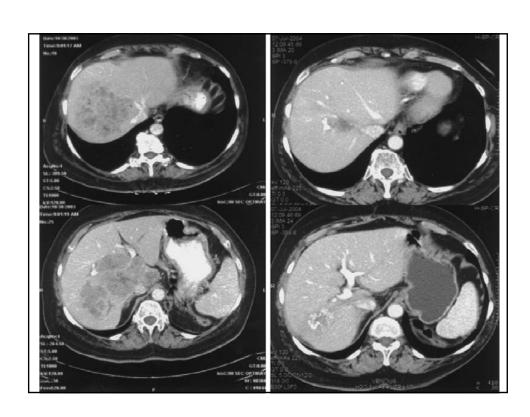
MIS: Robotic Surgery

Colon Cancer Metastases

- Liver most common site
 - Approximate 50% incidence
 - Often only site
- Surgical resection remains mainstay of curative therapy
 - <20% amenable to resection
- Adjuncts to surgical resection
 - Ablation therapy (RFA, Microwave)
 - Minimally invasive approaches

Colon Cancer therapies

- Chemotherapy (marked advances)
- Surgery (Primary tumor, metastatic disease, isolated hepatic perfusion)
- Locoregional therapy
 - SIRT (Selective internal radiation therapy; y-90)
 - HAIP (Hepatic artery infusion pump)
 - Ablation therapy
 - HIPEC


Chemotherapy advancement

1996

- 5FU / Leucovorin
- Prolonged patient survival
- Induce disease/tumor shrinkage
- May allow resection in previously unresectable patients (response > 50%)
- Chemotherapy toxicities

2013

- Avastin(bevacizumab)
- Aflibercept (Eylea)
- Erbitux (cetuximab)
- Vectibix (panitumumab)
- •Eloxatin (oxaliplatin)
- •Camptosar (irinotecan)
- •5FU
- •Xeloda (capecitabine)
- •Tarceva (erlotonib)
- •FUDR
- •Leucovorin
- •Levamisole
- •Mitomycin-C

"Unresectability"

- Relative (eye of the beholder)
 - Expertise, Resources, Attitude
- Surgery Risk
 - Anatomic
 - Techniques
 - Mortality (20% in '80's →<5%
- Better Chemotherapy and imaging \rightarrow Better patient selection

Surgical Dogma

- 'Unresectable'
 - · Bilobar disease
 - >4 lesions
 - Extrahepatic/Metachronous disease
 - Lesions > 5cm
- SSO/SSAT/AHPBA Consensus
 - Dogma no longer valid; Important factors to consider for resection
 - Margin (-) resection
 - Complete resection/treatment of all intrahepatic/extrahepatic disease
 - Functional liver remnant with inflow/outflow/biliary drainage of >2 contiguous sectors(segments)

Locoregional therapies

- Ablation
- SIRT
- Isolate Hepatic Perfusion (IHP)
- Hepatic artery infusion pump (HAIP)
- Hyperthermic Intraperitoneal Chemotherapy (HIPEC)
- Indications
 - Unresectable disease
 - Medically unfit for hepatectomy
 - Poor biology (widespread extrahepatic disease, distant metastases, etc.)

Ablation therapy

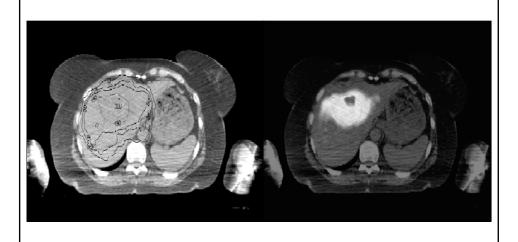
- Employs energy (radiofrequency or microwave) to cause tumor necrosis
 - RF uses high frequency AC current
 - Microwave uses electromagnetic waves at microwave energy for tissue heating
- Limited damage to surrounding liver
- Open, laparoscopic, percutaneous approaches
 - Efficacy: Open>Laparoscopic>Percutaneous
 - Inferior to resection in survival and recurrence
- Limited by tumor size (3 cm), anatomy, and heat sink
- · Adjunct to major resection

Laparoscopic MWA

Laparoscopic MWA

Laparoscopic MWA ALOKA THE OSUMC CTR | No 1D | Y | RPR. 07. 10 | 12:22:50 | 37Hz

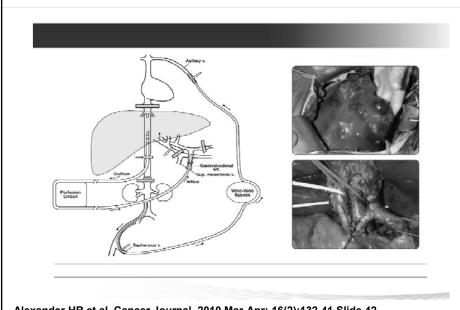
Laparoscopic MWA


SIRT (yttrium-90 microspheres)

- Radiolabelled particles
 - TheraSpheres MDS Nordion (HCC)
 - SIRSpheres SIRTex (CRC)
- High dose radiation to tumor with low dose radiation to liver
- β particle emission with 2-3mm penetration
- Delivered into hepatic artery

SIRT procedure

- Pre-treatment
 - Hepatic angiogram, MAA (shunt study)
 - Embolization of gastroduodenal artery and other vessels as needed
 - LFTs
- Treatment
 - Hepatic artery catheterization and microsphere implantation
- Post-treatment
 - Gamma scan to confirm sphere location


SIRT Post-gamma scan

Isolated Hepatic Perfusion (IHP)

- Goal to provide durable control of isolated diffuse liver metastases of select tumor types
- Hepatic artery major blood supply to liver tumors
- Allows intense treatment to cancer-burdened liver without systemic toxicity
 - Hepatic circulation isolated on a circuit to continuously perfuse chemotherapy under mild hypothermic conditions
- Major operation with associated morbidity

Isolated Hepatic Perfusion (IHP)

Alexander HR et al. Cancer Journal. 2010 Mar-Apr; 16(2):132-41 Slide 42

IHP Technique

- Liver vasculature isolated
- Hepatic temperature probes placed
- 1 hour of hyperthermic (40°C.) perfusion with high dose chemotherapy administration
- Liver flushed of chemotherapy after perfusion
- Vascular catheters removed and vessels repaired

IHP: Treatment Response

- In 114 pts, 59% response rate seen
- Median progression free survival 7 months
- May be useful in conjunction with adjuvant chemotherapy in very select patients

Treatment	n*	CR	PR	%	Hepatic PFS (m)
Overall	114	2	67	59	7.0
IHP (no HAI)	58	0	33	57	5.8
IHP (HAI)	46	2	30	65	13.0†
IHP (TNF alone)	10	0	4		3.0

 $\dagger P < 0.001$ vs. IHP (no HAI) and IHP (TNF alone).

Alexander HR et al. Ann Surg Onc 2009

Peritoneal Metastases (PM)

- PM late manifestation of advanced cancer of various tumor types
- Poor prognosis and outcomes (avg 6 mos. survival)
- Significant treatment challenge
- Limited options

Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for Peritoneal Metastases

- Historical therapy: Chemotherapy, radiation, and palliative surgery
- Aggressive surgical approach: Cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC)
- Utilized in very select patients with different tumor types (incl. colon, appendix)

Cytoreductive Surgery (CRS)/HIPEC

- 2 Major components to surgery
 - Cytoreductive surgery (CRS)
 - Address gross (visible) peritoneal tumor burden
 - Goal is to eliminate all gross disease (<2.5mm)
 - HIPEC
 - Address microscopic peritoneal disease after CRS
 - Regional perfusion utilizing hyperthermia and high dose chemotherapy

CRS

- Major Surgery
- Eliminate all gross tumor
 - May require peritonectomies
 - Multi-visceral (organ) resection sometimes necessary
- Completeness of cytoreduction important to outcome
- Increased morbidity and mortality

CRS: Completeness of cytoreduction

- Major determinant of survival
- Glehen et al. Multi-institutional study of 506 pts receiving CRS/HIPEC
 - Overall median survival 19.2 mos
 - Complete CRS/HIPEC median survival 32.4 mos
 - Incomplete survival 8.4 months
 - P<0.0001

Glehen et al. JCO 2004

CRS: Predictive factors for success

- Peritoneal Surface Malignancy Group determined 8 predictive factors
 - ECOG≤2
 - No evidence of extra-abdominal disease
 - ≤3 small, resectable liver metastases
 - No biliary obstruction
 - No ureteral obstruction
 - No bowel obstruction > 1 site
 - SB involvement
 - Small disease within lesser omentum

Esquivel, J Ann Surg Oncol 2007

HIPEC

- Hyperthermia
 - More toxic to cancer cells
 - Potentiates cytotoxic effects of chemotherapy
 - Direct effect on tumor tissue to soften the tissue and decrease interstitial pressure to improve chemotherapy penetration
- High dose chemotherapy administration with decreased systemic toxicity
- Continuous circulation of heated chemotherapy throughout the abdominal/peritoneal cavity

HIPEC

 Potential 	Table 5. Details of Major Postoperative Complications (grade 3/4 according to the National Cancer Institute's Common Toxicity Criteria)			
significant	Type of Complication	No.	%	
complications	Digestive fistula	42 12	8.3	
• Surgical	Hematologic toxicity Systemic sepsis	10	2,4	
morbidity 22.9%	Postoperative bleeding Intra-abdominal abscess	9	1.1	
•	Respiratory distress	8	1.6	
Mortality 4%	Pneumonia	8	1.	
	Urinary fistula	5	1	
	Line sepsis Bowel obstruction	5	1	
	Pulmonary embolism	2	0.	
	Peritoritis	2	0.	
	Other	6	1.	
	Combined morbidity	116	22.	
	Mortality	20	4	

HIPEC vs. Chemotherapy

- Verwaal et al. showed survival advantage for patients for patients with colorectal PC
 - Median survival 22.3 months (CRS/HIPEC/Chemo-5-FU/Leucovorin)
 - Median survival 12.6 months for chemotherapy with or without palliative surgery
 - P=0.032
- Selection bias?

Verwaal et al. JCO 2003

HIPEC vs. Chemotherapy

- Elias et al. Case control study of 96 patients
- CRS/HIPEC (Oxaliplatin) vs.. Modern chemotx (Oxaliplatin/Irinotec an)
- Median Survival
 - CRS/HIPEC 62.7 mos.
 - Chemotherapy 23.9 mos.
 - P<0.05

Elias et al. JCO 2009

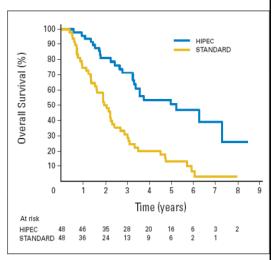


Fig 1. Overall survival of group receiving cytoreductive surgery, hyperthermic intraperitoneal chemotherapy (HIPEC), and systemic treatment versus those receiving standard treatment.

CRS/HIPEC Summary

- May be an effective therapy in well selected patients with colorectal cancer and GI tumors
- Complete cytoreduction paramount
- Major morbidity/mortality associated with aggressive surgical approach
- Multidisciplinary approach necessary in decision making