Esophageal Cancer

Christina Wu, MD
Assistant Professor of Internal Medicine
Department of Internal Medicine
Division of Medical Oncology
The Ohio State University Wexner Medical Center

Esophageal cancer

- In the US (2012):
 - 17,460 new cases, 15,070 deaths
- Worldwide (2008)
 - 482,300 new cases, 406,800 deaths
 - 6th leading cause of cancer deaths
- Median age of diagnosis: 67 years
- Male predominance

Esophageal cancer			
Squamous cell	Adenocarcinoma		
Proximal and mid-portion	Distal third and gastroesophageal junction		
Decreasing	Increasing		
African American > Caucasian	Caucasian > African American		
Tobacco and alcohol	Tobacco		
HPV	Obesity		
Ingestion of corrosives	GERD		
Plummer-Vinson Syndrome	Barrett's esophagus		
	Proximal and mid-portion Decreasing African American > Caucasian Tobacco and alcohol HPV Ingestion of corrosives Plummer-Vinson		

Barrett's esophagus

- Replacement of squamous epithelium with intestinal columnar epithelium
- Incidence:
 - 10-15% of endoscopies evaluating GERD
 - 40% patients with esophageal strictures
- 2% risk of adenocarcinoma over 10 yrs
- No therapy reverts (antacids, surgery, laser)

Barrett's esophagus

- Consider screening if with risk factors for esophageal cancer:
 - >50 years, Caucasian
 - chronic GERD
 - hiatal hernia
 - high body mass index

Wang et al. Am J Gastroenterol 2008;103:788

Barrett's esophagus

Dysplasia	Repeat endoscopy
No dysplasia	3 years
Low-grade	6-12 months
High-grade	Every 3 months or local therapy

Chemoprevention for Barrett's Esophagus Trial

- ↑COX-2 in Barrett'sesophagus
- U.S. trial with celecoxib
 - 100 pts with Barrett's esophagus: low or high grade dysplasia
 - Placebo vs Celecoxib 200 mg BID
 - No change in EGD findings at 48 weeks
 - No change in COX 1/2 mRNA

Heath et al JNCI 2007;99:545

Esophageal cancer

- Signs and symptoms:
 - Dysphagia and odynophagia (solids before liquid)
 - Weight loss
 - Abdominal pain
 - Cough and hoarseness
 - Supraclavicular adenopathy

Diagnostic work-up

- •CBC and chemistry
- Esophagogastroduodenoscopy
- •CT chest/abdomen/pelvis with IV and PO contrast
- •PET/CT
- Endoscopy with ultrasound
- Bronchoscopy(if above and at level of carina)

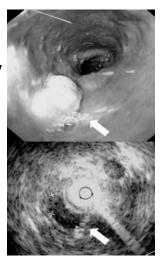


Image from: en.wikipedia

PET/CT

- Utilized for preoperative staging
 - Correlate with EUS and CT scans
 - Upstages tumor to avoid surgery
- Prognostic
 - PET/CT responders after induction chemotherapy have improved survival

Staging

Tumor

- Tis High grade dysplasia
- T1 Tumor invades lamina propria, muscularis mucosae or submucosa
- T2 Tumor invades muscularis propria
- T3 Tumor invades adventitia
- T4 Tumor invades adjacent structures
 - T4a Resectable tumor invading pleura, pericardium or diaphragm
 - T4b Unresectable tumor invading other adjacent structures, such as aorta, vertebral body, trachea, etc

Staging

Node

- N0 No regional LN involvement
- N1 Metastasis in 1-2 regional nodes
- N2 Metastasis in 3-6 regional nodes
- N3 Metastasis in more than 7 regional nodes

Metastasis

- M0 No distant metastasis
- M1 Distant metastasis

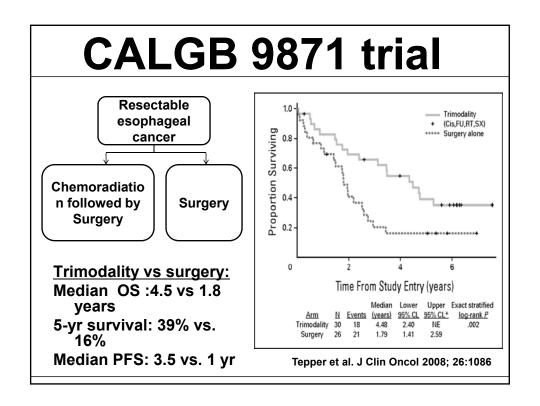
5 Year Survival by Stage

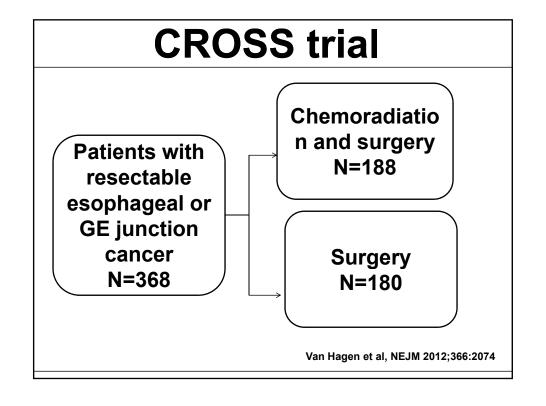
Stage	TNM	5-year Survival
Stage 0	TisN0M0	
Stage I	T1N0M0	80-90%
Stage IIA	T2-T3N0M0	50%
Stage IIB	T1-2N1M0	20%
Stage III	T3N1M0 T4N0- 1M0	10-15%
Stage IVA	M1a	10%
Stage IVB	M1b	Anecdotal

Treatment Options

- Resectable cancer
 - Surgery
 - Radiation
 - Chemotherapy
- Unresectable cancer
 - Radiation
 - Chemotherapy

- Metastatic cancer
 - Chemotherapy
 - Radiation therapy
 - Photodynamic Therapy
 - Laser Ablation
 - Stents
 - Nutrition (PEG, TPN)

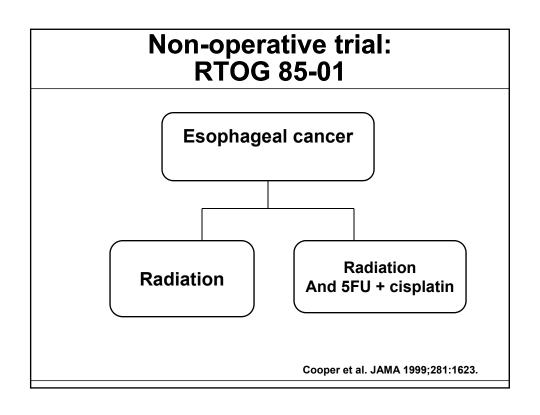

Resectable cancer


- Tumor location
- Tumor stage (nodal involvement, metastasis)
- Patient medically fit for esophagectomy

Meta-analysis: Survival benefit from neoadjuvant chemoradiation vs. chemotherapy

	Neoadjuvant chemoradiation	Neoadjuvant chemotherapy
Number	10 studies, total n = 1209	8 studies, total n = 1724
HR for all-cause mortality	0.81 (p=0.002)	0.90 (p=0.05)
Absolute survival difference at 2 years	13%	7%
Comments	Similar results for SCC and AC	Benefit only in AC, not SCC

Gebski et al, Lancet Oncol 2007; 8:226-34.

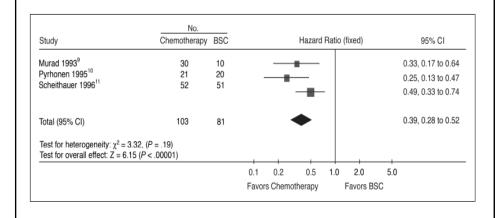


CROSS trial results

Surgery		Trimodality
67%	R0 resection	92.3%
3.8%	In hospital mortality	3.4%
26 months	Median survival	49 months
70%	1 year survival	82%
52%	2 year survival	67%
48%	3 year survival (HR 0.67, p=0.011)	59%

Van Hagen et al, NEJM 2012;366:2074

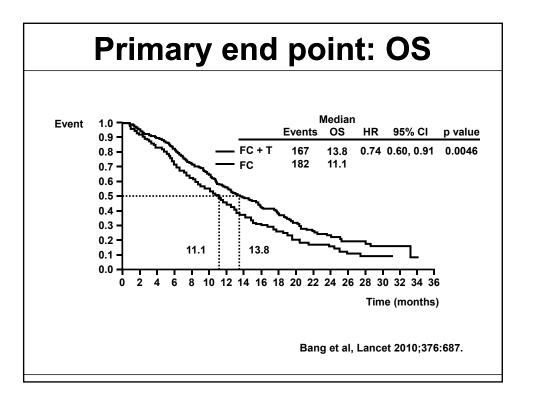
Unresectable tumor



Definitive Chemoradiation or Radiation for Esophageal Cancer

	Chemoradiation	Radiation
Median survival	12.5 months	8.9 months
1- year survival	52%	34%
2-year survival	36%	10%
5-year survival	26%	0%

Cooper et al. JAMA 1999;281:1623.


Metastatic esophageal cancer: Best Supportive Care vs Chemotherapy

Wagner et al. JCO 2006;24:2903.

Targeted therapy-HER2

- Human epidermal growth factor receptor-2
- HER2 is over-expressed in 20% gastro-esophageal and gastric cancers
- Antibody to HER2- trastuzumab

In summary

- Incidence: Adenocarcinoma ↑, squamous cell↓ carcinoma
- Risk factors:
 - Adenocarcinoma: tobacco, obesity, GERD, Barrett's esophagus
 - Squamous cell carcinoma: tobacco, alcohol, HPV, corrosive ingestion
- Signs and symptoms:
 - Dysphagia/odynophagia, weight loss, pain, and cough
- Work-up: CBC + CMP, EGD, CT chest/abdomen/pelvis
- Treatment: Multi-modality- surgery, radiation, chemotherapy
- Prognosis:
 - Poor prognosis (1/3 patients have metastatic disease at diagnosis)
 - Improved prognosis if localized, resectable cancer

Surgical Intervention for Esophageal Cancer

Edmund Kassis, MD
Assistant Professor of Surgery
Department of Surgery
Division of Thoracic Surgery
The Ohio State University Wexner Medical Center

Overview

- OSU approach to esophageal cancer
- Morbidity and mortality after esophagectomy
- Approaches to esophageal resection

Using evidence-based medicine, has the ideal operative approach been determined?

Answer: No

Algorithm for Esophageal Cancer: OSU Approach CT C/A/P, PET/CT, EUS T4 or Metastases T1N0 — Esophagectomy T2-T3 — Chemo/XRT, esophagectomy N1 — Chemo/XRT, esophagectomy Photodynamic therapy Esophageal stenting Palliative CTX/XRT

Esophagectomy and Survival

Author (year)	N	Approach	1 year survival	5-year survival
Swanson (2001)	250	Three hole	44	NR
Bailey (2003)	1777	Varied	NR	NR
Rizk (2004)	510	Varied	44	NR
Lerut (2005)	394	Varied	63	30
Portale (2006)	263	Varied	NR	46.5
Orringer (2007)	2007	THE	70	29
Mathisen (1998)	104	Varied	NR	15%

Esophagectomy and Mortality

- Open esophagectomy mortality rates range from 8% at high volume centers to 23% in low volume centers (NEJM 2002)
- Published series from experienced centers report a mortality rate of 5%

High Volume Centers for Esophagectomy: Number needed to achieve low post-operative mortality

ROL in last 10 years w/13 papers:

- Reduction in post-op mortality with increasing case volumes per year
- Post-op complication rates are lower in high-volume hospitals

Metzger, R. et al. Dis of the Esophagus, Vol17(4)310,Dec, 2004

High Volume Centers: What is the number needed to achieve low post-operative mortality

- Management of complications is more successful in high-volume hospitals
- Long-term prognosis is also correlated to case-volume
- With the experience of > 20
 esophagectomies/yr mortality <5% can
 be achieved

Metzger, R. et al. Dis of the Esophagus, Vol17(4)310,Dec, 2004

High Volume Centers for Esophagectomy: What is the number needed to achieve low post-operative

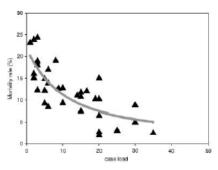


Fig. 2 Correlation between number of esophagectomies and hospital mortality rate.

Metzger, R. et al. Dis of the Esophagus, Vol17(4)310,Dec, 2004

Hospital Volume and Mortality

Author	Study period	Low volume	High volume
Begg (1998)	1984-1993	17.3 (<5)	3.4 (>11)
Patti (1998)	1990-1994	16 (<8)	4.8 (>30)
Swisher (2000)	1994-1996	12.2 (<5)	3 (>5)
Dimick (2001)	1989-1999	16 (<3)	2.7 (>15)
Von Lanachot (2001)	1993-1998	12.1 (<10)	4.9 (>50)
Birkmeyer (2002)	1994-1999	23% (<2)	8.1 (>19)
Dimick (2003)	1994-1998	15.4	2.5%
Finlayson (2003)	1995-1997	15 (<4)	6.5 (>9)
Dimick (2005)	1998-1999	24.3 (<5)	11.4 (>12)

Esoph	_	omy and Mortality	•	rtive
Author (year)	N	Approach	LOS	Mortality
Swanson (2001)	250	Three hole	13	3.6
Bailey (2003)	1777	Varied	NR	9.8
Rizk (2004)	510	Varied	11	6.1
Lerut (2005)	394	Varied	NR	2.1
Portale (2006)	263	Varied	NR	4.5
Orringer (2007)	2007	THE	10	3.0
Mathisen (1998)	104	Varied	NR	2.9

Esop	nage	ctomy	Morbio	aity
	Michigan	VA	MSKCC	Duke
Leak	12%	NR	21%	14%
Pneumonia	2%	21%	21%	16%
RLN Injury	4.5%	NR	4%	NR
Conduit Necrosis	2%	NR	NR	NR
Chylothorax	1%	0.02%	NR	NR
MI	NR	1.2%	NR	NR
Tracheal Injury	0.4%	NR	NR	NR
Splenectomy	2%	NR	NR	NR
Diaphragm Hernia	NR	NR	1.2%	NR

Lowering the Morbidity of Esophagectomy

- Limit rib spreading to 5 cm during transthoracic esophagectomy (Skinner 1967)
- Avoid thoracotomy and perform transhiatal approach (Orringer 1980)
- Perform only in high volume centers (Birkmeier 2002)
- Perform minimally invasive esophagectomy in high volume center (Luketich 1996)

Surgical Options

Approach

- Transhiatal
- Transthoracic
- Three Field
- Minimally Invasive
- En Bloc

Anastomosis

- Neck
- Chest
- Abdomen

Conduit

- Stomach
- Colon
- Jejunum
- Skin Tube

Route

- Post. Mediast.
- Retrosternal
- Subcutaneous

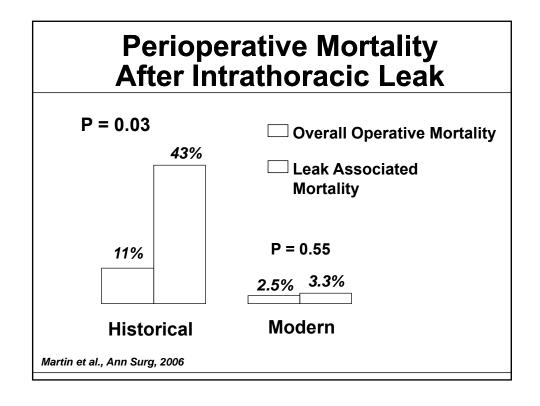
Transhiatal Esophagectomy

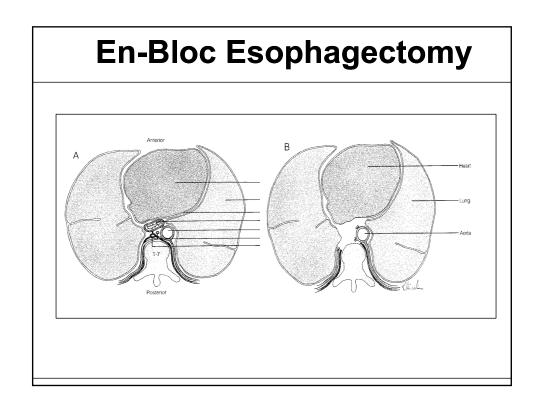
Experienced centers report <5% mortality

• Overall survival: 20-25%

• Stage I: 60-70%

• Stage III: 5%


40% rate of local recurrence


• Major complication rate of 30-40%

Comparison of Approach Transhiatal vs. Transthoracic

- No difference in operative time, blood loss, morbidity or mortality
- Survival similar
- Anastomotic Leak rate
 - Cervical 11%
 - Thoracic 6%

Putnam et al., Annal Thor Surg, 1994

Extended Surgical Resection *Transhiatal vs. Transthoracic "En Bloc"*

T	HE TT "Eı	n Bloc"	
No. Pts.	106 pts	114 pts	
Pulm Cxns	29 (27%)	65 (57%)	< 0.001
ICU Days	2 (0-38)	6 (0-79)	<0.001
Op Mort	2 (2%)	5 (4%)	0.45
Relapse	62 (58%)	57 (50%)	0.60
5-yr Surv.	27%	39%	0.12

Hulscher et al., NEJM, 2002

Radical Three Field Esophagectomy

- Thoracic, abdominal and cervical incisions
- Three field lymphadenectomy
- Increased complications:
 - RLN Injury: 56 vs 30%
 - Tracheostomy: 53 vs 10%
 - Phrenic nerve injury: 13 vs 0%
 - No difference in 5-year survival
- Significant increase in morbidity with no improvement in survival

MIE Techniques

- Thoracoscopic; laparotomy
- Laparoscopic; thoracotomy
- Laparoscopic; transhiatal
- Thoracoscopic; laparoscopic

MIE vs Open

264		
364	437	391
297	1046	1142
0.3	1.8	2.9
6.1	9.9	11.1
11.3	23.0	22.3
10.8	6.3	6.9
	0.3 6.1 11.3	0.3 1.8 6.1 9.9 11.3 23.0

MIE

- Luketich, 2003
- 222 patients
- High grade dysplasia
 47 pts
- Esophageal cancer 175 pts
 - Neoadjuvant chemotherapy 78 pts
 - Neoadjuvant radiotherapy 36 pts

MIE

- MIE completed in 206 (92.8%) pts
- Conversion to open
 - Thoracotomy12 pts
 - Laparotomy 4 pts

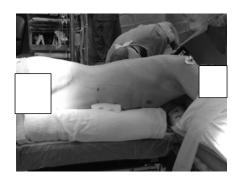
MIE

- ICU stay 1 day (1 30)
- Time to oral intake 4 days (1 40)
- Hospital stay 7 days (3 75)
- Median follow-up 9 months

MIE

- Minor complications 53 (24%)
- Major complications 71 (32%)

Complication	N (%)	Complication N (%)	
Death	3 (1.4)	Chylothorax	7 (3.2)
Leak	26 (11.7)	Gastric necrosis	7 (3.2)
Pneumonia	17 (7.7)	Delayed gastric empying	4 (1.8)
Pleural effusion	14 (6.3)	Tracheal injury	4 (1.8)
Recurrent nerve palsy	8 (3.6)	ARDS	4 (1.8)


Survival After MIE Survival After MIE (n=35) Stage II (n=81) Stage II (n=71) Stage III (n=71)

Totally Robotic Ivor Lewis Esophagectomy

Totally Robotic Ivor Lewis Esophagectomy

Totally Robotic Ivor Lewis Esophagectomy

- Two patients completed thus far
- Mean age 59 years
- Mean operative time 10 hours
- Mean blood loss <100 cc
- Mean LOS 7 days
- No anastomotic leak

Summary

- Debate continues as to optimal approach
 - Transhiatal
 - Pros: Avoid thoracotomy
 Technically easier operation

Summary

- Transthoracic (Ivor Lewis)
 - Pros: Lower rate of leaks, More extensive lymphadenectomy, decreased stricture rate, no risk to recurrent laryngeal nerve
 - Cons: Increased pain (thoracotomy)
- Intrathoracic leak not associated with increased mortality

Summary

- Three field esophagectomy and 'en-bloc' esophagectomy increase morbidity without improving survival
- MIE
 - ? Decrease in peri-operative complications
 - Not proven to be superior to open approach
 - Long term outcomes similar to open approach

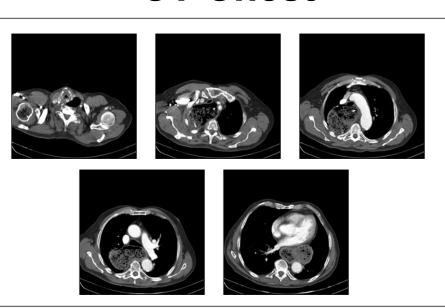
Esophagectomy

Techniques

_	Transhiatal	Ivor Lewis	Three field
Advantages	Shorter operation ↓ Pulm Comp ↓ Pain		[↓] Chest Leak I lymph node yield ed complete resection
Disadvantag	les ↓ Node dissection Double the leak Recurrent nerve Injury to thorac Neck morbidity	rate Increa injury	sed pulmonary comp sed pain

Summary

- Overall survival still poor in patients with esophageal cancer
- Surgery remains mainstay of treatment
- In order for surgery to have an impact on survival peri-operative mortality and morbidity must be low


Summary

- There is no ideal approach to esophagectomy
- Outcomes are best when performed in high volume centers

Jejunal Interposition

- 79 year old male with esophageal cancer in the setting of end stage achalasia
- History of multiple dilations and Botox injections
- History of subtotal gastrectomy
- New onset dysphagia and dyspnea

CT Chest

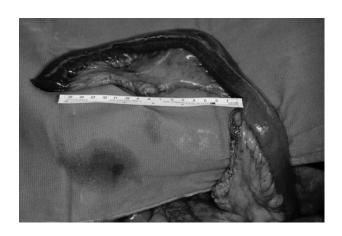
Jejunal Interposition for Esophageal Replacement

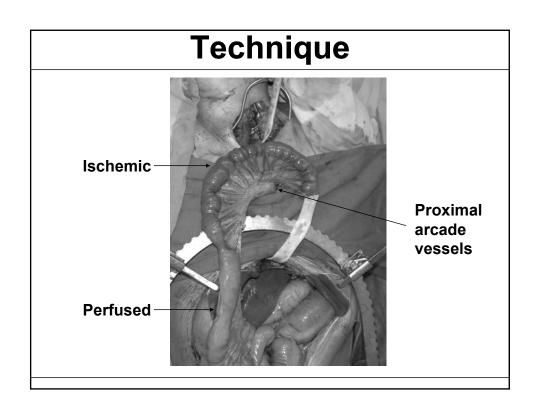
- Advantages
 - Readily available
 - Limited physiologic impact
 - Sterile conduit
 - Generally free of intrinsic disease
 - Approximates diameter of esophagus
 - Maintains intrinsic peristalsis

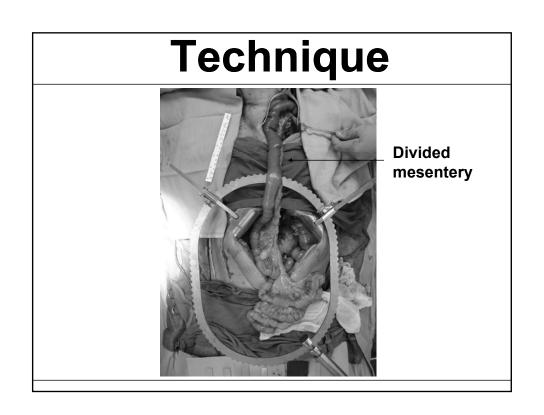
Jejunal Interposition for Esophageal Replacement

- Disadvantages
 - Anatomic limitations of mesenteric arcades
- Limited to short segment interpositions
- Longer segment risks ischemia

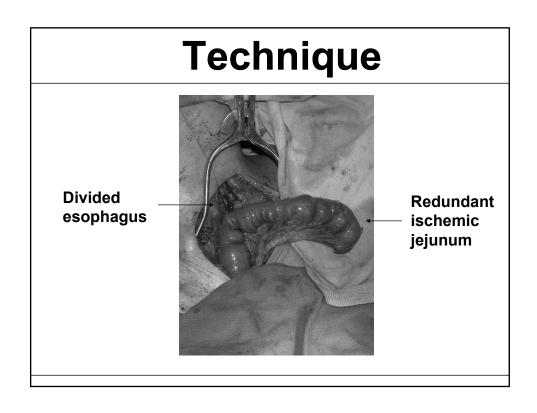
Technique

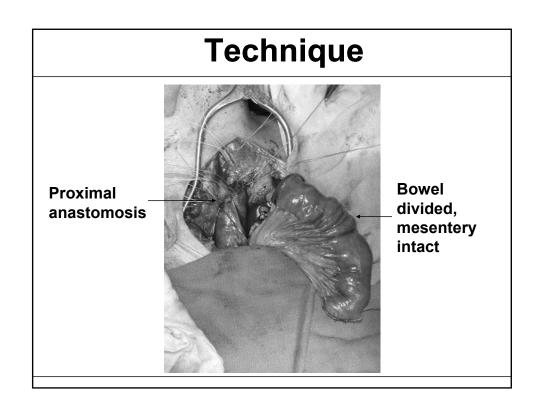

Technique

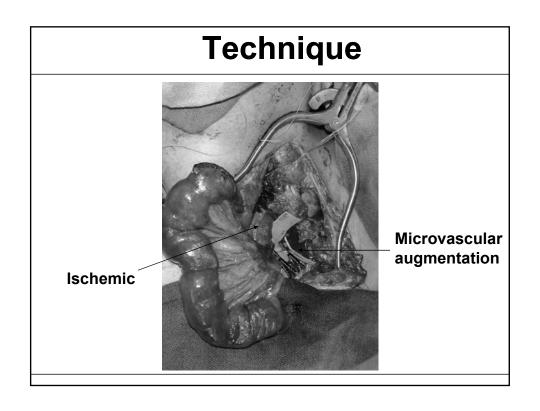



Technique

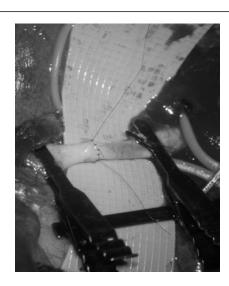
Technique

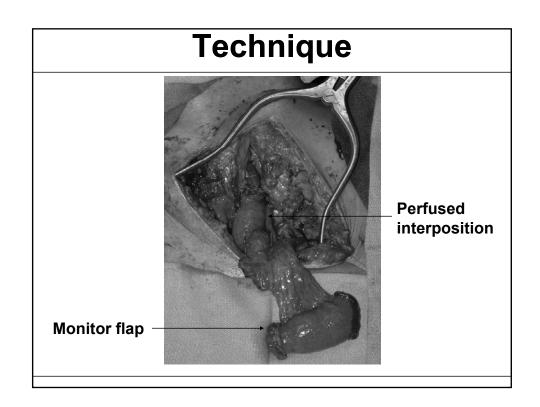


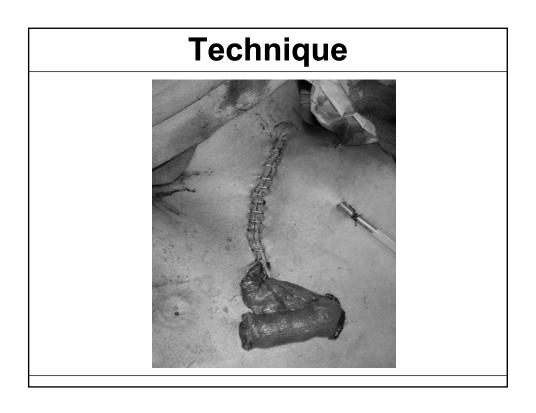




Technique







"Supercharging"

- Microvascular augmentation
- Internal thoracic or cervical vessels

