Vitamin D: The 2011 Dietary Reference Intakes fo Vitamin D and Calcium

Steven K. Clinton, MD, PhD
Professor
Department of Internal Medicine
Division of Medical Oncology
The Ohio State University Wexner Medical Center

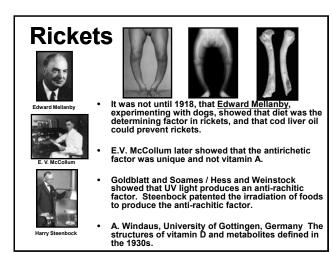
Disclosures

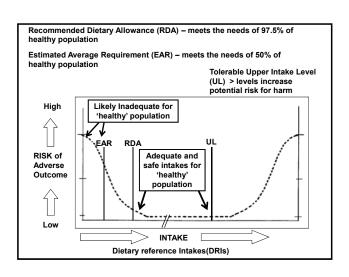
Financial: None
Conflicts of Interest: None
Strong Opinions: Many

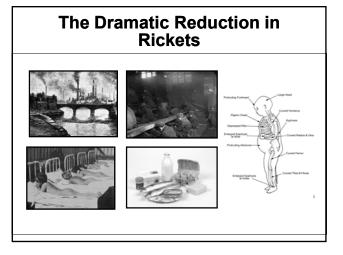
Outline

- The 2011 Dietary Reference Intakes for Vitamin D and Calcium (Dr. Clinton)
- Vitamin D and Skeletal Health (Dr. Ryan)
- Vitamin D and Non-Skeletal Outcomes (Dr. Clinton)

Francis Gilsson et al.

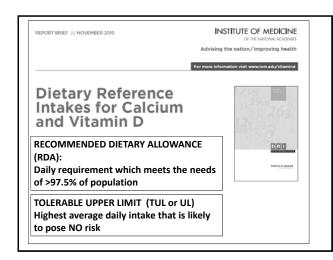

A Teatise of the Rickets: Being a Disease Common to Children.


London. 1651


This book was one of the first pediatric texts published in England.

Francis Glisson and contributors provided a clear description of rickets.

They did not recognize that diet played a role in the etiology of the disease.



Why Revisit DRI for Vitamin D (2010)?

- Previous DRI's established 1997
 - Average Intake & Upper Level
- Scientific Evidence after 1996 until 2010
 - 75% of current published evidence relating dietary vitamin d or serum 25(OH)D to health outcomes
 - Many health outcomes not considered by the 1997 DRI Committee
 - Performance measures (e.g. falls in elderly)
 - · Non-bone health outcomes
 - (cancer, cardiovascular, diabetes, etc.)
 - Considerable controversy-discussion about effects of vitamin D and amounts needed
- Calcium included because closely linked to vitamin D
- Sponsors: U.S. and Canadian governments
- IOM- NAS Committee of Experts
 - · Closed Deliberations and final External Review

Health Outcomes Evaluated: Indicators

- · Cancer / Neoplasms
 - All cancers (overall cancer risk)
 - **Breast Cancer**
 - Colorectal Cancer/Colon Polyps
 - Prostate Cancer
- Cardiovascular Diseases and Hypertension
- Diabetes (Type 2) and Metabolic Syndrome (Obesity)
- Falls
- Immune Functioning
- Asthma
- Autoimmune Disease
- · Infectious Diseases
- Neuropsychological Functioning
- Physical Performance
- Preeclampsia of Pregnancy
- Skeletal Health (commonly Bone Health)
 - Calcium absorption, Calcium balance, BMC/BMD, Fracture risk, Rickets/Osteomalacia, 24OHD (intermediate), PTH (intermediate)

Vitamin D and Calcium: DRIs

- DRIs reflect a "public health" approach
 - DRIs are about populations and the distribution of needs.
 - Need dose-response → median requirement and variance → level akin to requirement of 98.7% of population
 - · DRIs are not for the medical model
 - diseased individuals, therapy of deficiency syndromes
- The IOM-DRI Committee considered many chronic diseases:
 - as possible "<u>indicators</u>" for establishing RDA-DRI
 - · to consider "totality" of evidence
 - quality of studies and strength of the evidence
 - randomized clinical trials (RCT) provide the greatest level of confidence

Agency for Healthcare Research and Quality: AHRQ

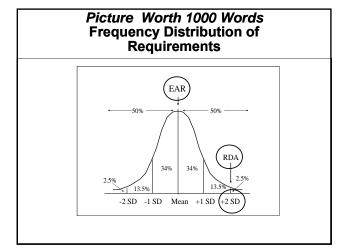
Number 183

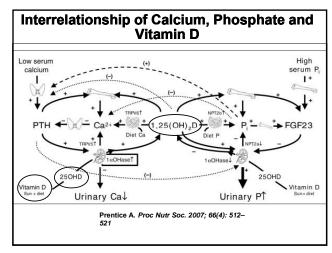
Vitamin D and Calcium:

A Systematic Review of Health Outcomes

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road


Rockville, MD 20850 www.ahrq.gov


Contract No. HHSA 290-2007-10055-I Task Order No. 4

Prepared by: Tufts Evidence-based Practice Center, Boston, MA

AHRQ Publication No. 09-E015

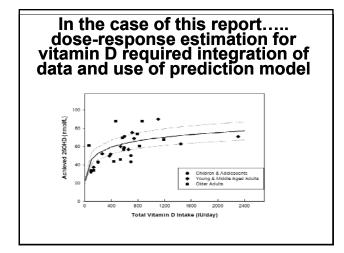
August 2009

Vitamin D: Challenges

- Vitamin D → Homeostatic regulated hormone
- Sun exposure and synthesis
 - Seasonal changes in serum 25OHD
 - Cannot incorporate readily in DRI considerations
 - Exposure and synthesis not well quantified
 - · Risk of skin cancer
- Biomarker of exposure
 - ✓ Serum 25OHD
 - Most data on health outcomes relate to serum values, not to dietary intake

Vitamin D: Development of Requirement Distribution

- Step 1 Link serum levels to distribution requirement
 - 40 nmol/L (16 ng/mL) roughly equivalent to EAR
 - 50 nmol/L (20 ng/mL) roughly equivalent to RDA
- Note
 - some studies (bone) suggest 50 nmol/L TOO HIGH for RDA
 - others suggest 50 nmol/L TOO LOW for RDA
 - decision was made by the COMMITTEE based on the <u>totality</u> of the highest quality evidence

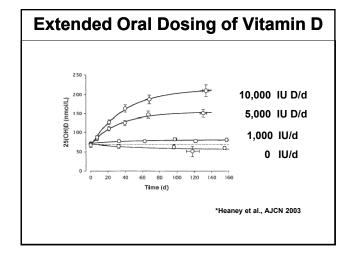

Vitamin D: Development of Requirement Distribution

- Step 2 Determine how much intake to achieve designated serum level
 - Assumption of minimal sun exposure
 - Integration of studies conducted in winter in northern latitudes (many recent studies)
 - Simulation of dose-response curve

Vitamin D: Institute of Medicine (IOM) Dietary Reference Intakes, 2011 (IU/d)

Ages (yrs)	Recommended Dietary Allowance (RDA) ^a	Tolerable Upper Intake Level (UL) ^b
1 – 3	600	2500
4 – 8	600	3000
9 – 70	600	4000
>70	800	4000

<u>Adequate intakes</u> for infants are 400 IU/d and ULs are 1000-1500 IU/d ^aCovers the needs of ≥97.5% of the population ^bLevel above which there is risk of adverse events

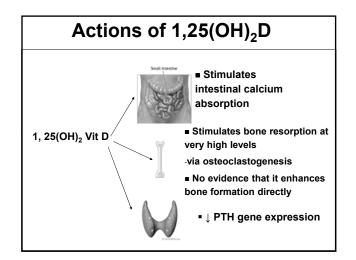


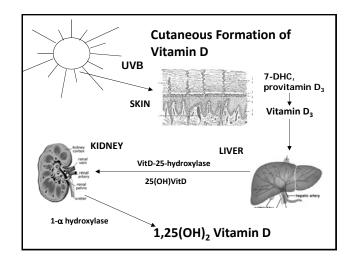
Calcium ERA and DRI						
•	EAR (mg/day)	RDA (mg/day)				
 1-3 years 	500	700				
 4-8 years 	800	1000				
 9-18 years 	1100	1300				
 19-5 0 years 	800	1000				
 51-70 years M 	800	1000				
 51-70 years F 	1000	1200				
 >70 years 	1000	1200				
 Preg/lac 14-18 y 	ears 1100	1300				
 Preg/lac 19-50 y 	ears 800	1000				
Infants 0 to 6 m	• Infants 0 to 6 mos: AI = 200					
 Infants 6 to 12 r 	 Infants 6 to 12 mos: Al= 260 					

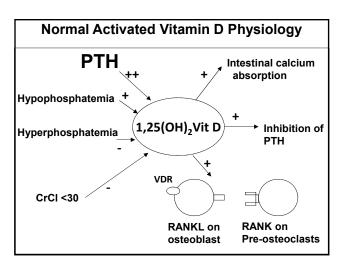
Derivation of Upper Limit: Adults

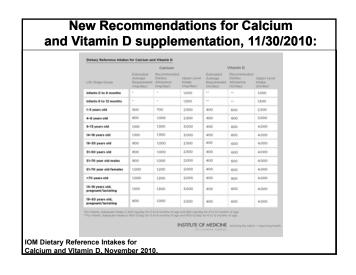
- Challenging
 - no long-term studies of higher dose supplements
- Serum 25(OH)D levels >125-150 nmol/L have been associated with increased risk for various endpoints
- Prudent <u>not</u> to surpass 125-150 nmol/L for <u>sustained</u> serum concentrations

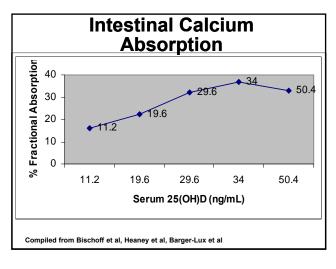
Tolerable Upper Intake Levels (ULs)					
Vitamin D (IU/day)					
Infants 0 to 6 mos	1000				
Infants 6 to 12 mos	1500				
1-3 years	2500				
4-8 years	3000				
9-18 years	4000				
19-50 years	4000				
51-70+ years	4000				
Preg/Lac 14-18	4000				
Preg/Lac 19-50	4000				

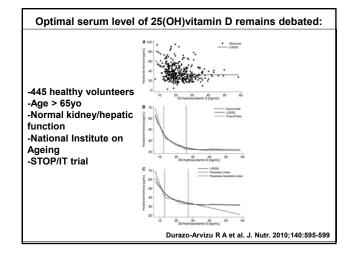


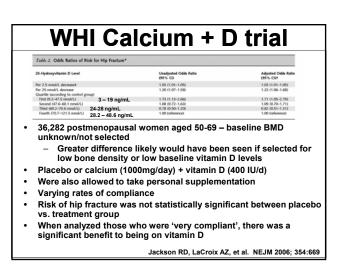

Vitamin D and Bone Health: Where we are in 2012

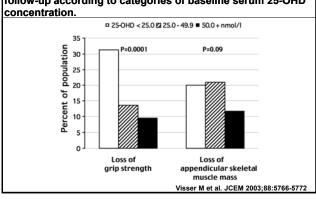

Laura E. Ryan, MD
Clinical Assistant Professor
Center for Women's Health
Division of Endocrinology, Diabetes and Metabolism
The Ohio State University Wexner Medical Center


55yo Postmenopausal Woman


- Presents for yearly evaluation menopause age 51
- · Wonders about bone health and need for 'vitamins'
- · Never a fragility fracture or height loss
- + Strong family history of hip fracture in both parents
- Never smoker, no steroid requirement
- ROS is negative, denies bone pain or muscle weakness
- · You order bone density
- What do you recommend for vitamin D supplementation in this patient?






Fracture Prevention

- Trevedi, 2003: 2686 partcipants, 65-85yo, community dwelling
- Given 100,000 IU orally q4mo (average 800IU/day) for 5 years
- Placebo group 25(OH)D: 21.2 ng/mL
- Treated group: 29.6 ng/mL
- 22% reduction in all fractures; 33% reduction in fragility fractures

Not everyone needs to have their vitamin D levels checked. Consider in:

- Elderly (age >65-70yo)
- Institutionalized/NH
- Dark skinned individuals
- Obese individual
- Hospitalized on general medicine service
- Patients with osteoporosis
- Fragility fractures
- Meds that increase vitamin D metabolism
- Pregnant women
- Malabsorption
- s/p bariatric surgery

Prevalence of grip strength loss (defined as loss >40%, study sample n = 1,008) and appendicular muscle mass loss (defined as loss >3%, study sample n = 331) during 3-yr follow-up according to categories of baseline serum 25-OHD concentration.

First patient

- 55yo with strong family history hip fracture
- · Being evaluated for osteoporosis
- Getting 25(OH)vitamin D level would be reasonable, along with calcium, PTH and albumin levels for physiologic context
- If her 25(OH) level is ≥20, IOM vitamin D recommendation:
 - 600 IU per day

Foods with Vitamin D

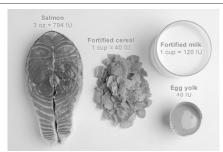


Image from: www.article-answers.com/best-sources-of-vitamin-d-in-foods/

How many of your patients eat 3 ounces salmon a day? Unlike calcium, dietary vitamin D is often an inadequate source for our daily needs

62yo female with gluten sensitivity and stress fracture of metatarsal

- GI symptoms have completely resolved on gluten-free diet, but she also finds that she might be lactose intolerant and avoids dairy
- Stress fracture of the foot occurred after she had been walking around on Black Friday for 8 hours
 No other history of fractures
- She doesn't smoke, no height loss, no family history of fractures
- Takes "burst" of steroids 1-2 x per year for asthma exacerbations, especially in the spring
- Takes one prenatal vitamin daily

Cholecalciferol (D3) vs. Ergocalciferol (D2)?

- . Dietary egg yolks and oily fish mainly have D3
- Fortified foods mainly have D2
- Most recent meta-analysis of 7 randomized trials found that cholecalciferol (D3) is more effective at both increasing serum vitamin D levels and also maintaining that level in the setting of lower-compliance
 - All of these trials, however, were in the setting of high-dose repletion, rather than daily maintenance
 - Difference only seen in weekly or monthly higher-dosing regimens
 - Tripkovic L, Lambert H et al. Am J Clin Nutr. 2012; 95:1357

Is this debate practical in central Ohio?

CVS – has no cholecalciferol available

Walmart does have cholecalciferol in stock

Target – no cholecalciferol in stock, but could order it

Image from www.menopause.org

35th Latitude – significant vitamin D deficiency is likely to occur 8-9 months of the year in more northern regions By the way – our patient does live in central Ohio – sigh . . .

Evaluation of our patient:

- · Calcium (total)
- Albumin
- · Magnesium, phos
- BUN/creat
- Alk Phos
- 25(OH)vitamin D
- PTH
- TSH
- DXA

- 9.2 (8.6 10.0 mg/dL)
- 3.8 (3.4 4.8 g/dL)
- 1.8, 3.2
- Creat 0.92 (0.6 1.1 mg/dL)
- 76 (50-120 U/L)
- 23 (30 100 ng/mL)
- 81 (14.0 72.0 pg/mL)
- 1.67 (0.55 4.78 mIU/mL)
- LS T-score -1.6
 - TH T-score -1.5
 - FN T-score -2.4

Hypovitaminosis D Osteopathy

- Stage 1:
 - Reduced intestinal absorption of calcium; decreased skeletal calcium reserves
 - · Osteoporosis; no biopsy evidence of osteomalacia
- Stage 2:
 - Decreased calcium absorption and bone mass (stage 1, cont)
 - · No clinical or lab evidence of osteomalacia
 - Osteomalacia is evident on bone biopsy
 - Increased undermineralized osteoid, decreased mineral apposition rates
- Stage 3:
 - · Osteomalacia clinically, biochemically, histologically

Hypovitaminosis D Osteopathy

- First introduced by Parfitt in 1990
- Highlighting the pathophysiologic change in bone before the development of the definition of osteomalacia
- Three stages, based upon histomorphometric analysis of adult bone samples
- Links the connection of Vit D to osteoporosis

How would you deal with this patient's low vitamin D and **secondary hyperparathyroidism**?

Women 50 -70 Men

Women >70

IOM Dietary Reference Intakes for

- · My own practice:
 - PM Women with low bone mass, vitamin D >30: 1000-1200IU/day
 - 25(OH)D level 25-30
 - 2000 IU/day, recheck 3-4mo
 - 18 **-** 25
 - 50,000 IU weekly x 6weeks
 - 2000IU daily; recheck 3-4mo
 - 12-18
 - 50,000IU 2x/week x 6weeks
 - Likely will need high dose weekly indefinitely
 - Daily 1200 2000 units OTC
 - <12
 - See above, but also look for the cause of the malabsorption

Goal: normalize vitamin D, but possibly more importantly, normalize parathyroid hormone.

73 yo female presents with thigh pain and recent pelvic ramus Fx

- Hx Roux-en-Y gastric bypass surgery 18 years ago, with successful weight loss; she now weighs 160 lbs.
- Does take 500mg calcium citrate BID and one MVI daily
- Has had multiple falls over the last couple of years recently fell down 4 back steps resulting in pelvic pain – to ER
- Admits to a sense of muscle weakness, causing her falls
- All of the bones of her legs hurt: "if my cat walks over my legs I scream in pain"
- Has lost 4" in height; broke wrist after falling onto the grass 2 summers ago

Treatment of Osteomalacia: Calcium and Vitamin D₃ Prevent Hip Fractures

 3270 women, 69 to 106 years

 Nursing homes / Apartments

Ambulatory

Follow-up 18 month

Vitamin D deficient

Number of Fractures by Prescription Group					
	Placebo	CaD	р		
Hip	110	80	< 0.001		
Non- vertebral	215	160	< 0.004		

Chapuy et al. NEJM 1992;327:1637-42.

Evaluation

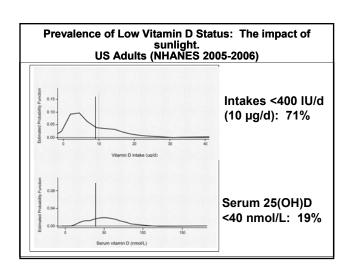
- Calcium 8.2
- PTH 185
- Phos 1.9
- Alk phos 224
 Normal 38 126
- Creat 0.60
- TSH 2.1
- Vitamin D 6
- 1,25(OH)vitamin D: 72
 - Normal 23 67

Diagnosis? Osteomalacia

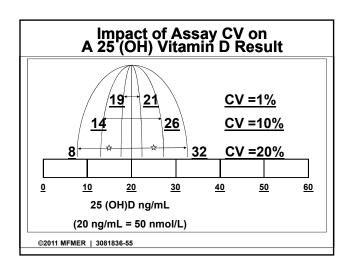
P, van Schoor NM Primer on the Metabolic Bone Diseases, ASBMR, 2008, 329-335

Treatment of Vitamin D Deficiency in Osteomalacia

- Often requires 50,000 unit capsules dosed up to daily
- May take 12-18 months to reverse whole-body depletion of calcium and vitamin D
- With persistent malabsorption or Roux-en-Y gastric bypass, may need 50,000 units 1-2x per week as maintenance, indefinitely
- Activated forms of vitamin D, calcitriol, are sometimes required
- Endpoint: normalization of alkaline phosphatase, PTH, blood calcium levels, and a normal 24hr urinary excretion of calcium; improvement of BMD by DXA
- · Endocrinology consultation is often helpful


Vitamin D and Bone Health

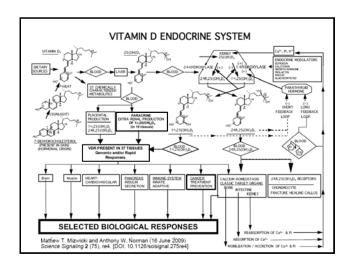
- A serum level of 25(OH)vitamin D of ≥ 20ng/dL is important for bone health
- Not everyone needs to have a vitamin D level checked
- Cholecalciferol may be more effective at raising and maintaining vitamin D stores, but is not widely available and has not been proven to be superior in preventing fractures
- Optimal vitamin D supplementation regimen is not well established and range from daily, weekly to monthly dosing
 - yearly dosing with 500,000IU may be harmful
- Vitamin D supplementation in the setting of secondary hyperparathyroidism or osteomalacia often requires much higher doses of vitamin D or calcitriol

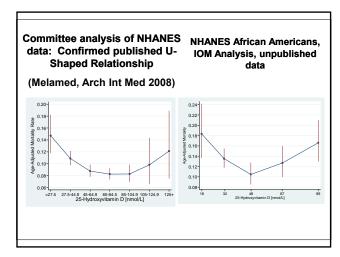

Vitamin D Status: Diet and Sunlight

Vitamin D and Health

Steven K. Clinton, MD, PhD
Professor
Department of Internal Medicine
Division of Medical Oncology
The Ohio State University Wexner Medical Center

Vitamin D Assay.

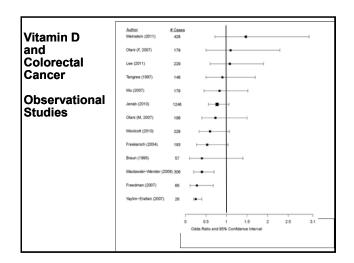

Vitamin D Assays


- Multiple different systems and changes in assay characteristics over time (Immune, HPLC, LC/MS).
- · Quality control inconsistent
- · Assay differences are concentration dependent
- Coefficients of Variation can be 10-20%
- We need established standards
 - Performance characteristics: CVs, specificity, sensitivity
 - Performance on external QC programs e.g., DEQAS
 - Relationship to external reference standards (e.g., NIST SRM)

Vitamin D: The Panacea for Cancer.

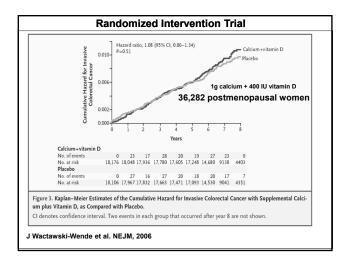
What is the evidence?

Is it sufficient for "public health" guidelines?



Health Outcomes Evaluated: Indicators

- Cancer / Neoplasms
 All cancers (overall cancer risk)
 Breast Cancer
 Colorectal Cancer/Colon Polyps
 Prostate Cancer
- Cardiovascular Diseases and Hypertension
- Diabetes (Type 2) and Metabolic Syndrome (Obesity)
- Falls
- · Immune Functioning
- Asthma
- Autoimmune Disease
- Infectious Diseases
- Neuropsychological Functioning
- Physical Performance
- · Preeclampsia of Pregnancy


Vitamin D and Human Cancer

- · Very weak data for dietary intake and most cancers.
- Strongest data is for serum 250HD and colon cancer
- · Few RCT in cancer
 - · Studies completed test single dosages of Vit D
 - · Studies often provide both Vit D and Calcium
 - Confounding with diet and/or exercise behaviors
 - Baseline status may be critical
 - Lower 25OHD groups may show benefit.
- Potential for U-shaped curve for pancreatic cancer.
- Many cancers have not been studied.

Vitamin D and Human Cancer

- · Genetics has not been incorporated.
 - · Human genetic variation.
 - Polymorphisms of vitamin D signaling
 - Cancer predisposition genotype
 - · Genetic heterogeneity of the cancer
- Additional prospective studies, including consortia
- Deeper investigation into organ site differences
- Controlled trials
 - multiple dosages over a wider range
 - longer durations
 - · starting earlier

Human Studies of Vitamin D and Cancer

- Target populations
 - · Cancer risk profile (frequency of outcome)
 - General population
 - · Higher risk population
 - Age
 - Ethnicity
 - Genetic predisposition
 - Carcinogen exposure
 - Premalignant condition
 - Cancer present
 - Pre-surgical models
- Exposure Measures
 - · Document diet, serum, and tissue metabolites

Vitamin D and Cancer Risk Vitamin D and Omega-3 Trial

- Pl's: JoAnn Manson and Julie Buring, Harvard
- Recruiting ~20,000 women and men
- All cardiovascular disease and cancer
- Combination of vitamin D 2,000 IU + ω -3 1g vs. placebo
- 5 years supplementation

Planned Ancillary Studies in VITAL

Pending

Imaging

Macular Degeneration Colorectal Adenomas

Non-invasive Vascular

Funded

Cognitive Function

Diabetes/Glucose Tolerance

Hypertension

Autoimmune Disorders

Asthma/Respiratory Diseases Bone Microarchitecture

Diabetic Nephropathy

Fractures

Mood Disorders/Depression

Infections

17