
Bladder Cancer

Amir Mortazavi, MD
Assistant Professor
Department of Internal Medicine
Division of Medical Oncology
The Ohio State University Wexner Medical Center

Objectives

- Bladder Cancer
 - Epidemiology
 - Pathology
 - Risk factors
 - Presentation and clinical findings
 - Staging
 - Natural history

2012 Estimated New Cancer Cases* Men Women 848,170 790,740 **Breast Prostate** Lung & bronchus Lung & bronchus Colon & rectum Colon & rectum Urinary bladder **Uterine corpus** Melanoma of the skin **Thyroid** Kidney & renal pelvis Melanoma of the skin Non-Hodgkin lymphoma Non-Hodgkin lymphoma Oral cavity & pharynx Kidney and renal pelvis Leukemia Ovary **Pancreas Pancreas** All Other Sites **All Other Sites** *Excludes basal and squamous cell skin cancers and in situ carcinomas except urinary bladder. Source: American Cancer Society, 2012

Epidemiology

- Bladder cancer in the United States:
 - Estimated 73,510 new cases and 14,880 cancer related deaths in 2012
 - Whites > Blacks (2:1)
 - M>F (3-4:1)
 - A disease of the elderly (6th-7th decades)
 - Rising incidence (20% over the last 20-yr)

Epidemiology

- In U.S., the second most prevalent cancer in men≥60
- Bladder cancer has significant financial impact on healthcare
 - Requires intensive, life-long cystoscopic, radiologic, and cytologic surveillance
 - Most expensive malignancy in the U.S.*

^{*} Botteman MF, et al. Pharmacoeconomics 21:1315; 2003

Bladder Cancer Pathology: Histologic Subtypes in the U.S.

- 90-95% Transitional Cell Carcinoma
- 3% Squamous Cell Carcinoma
- 2% Adenocarcinoma
- 1% Small Cell Carcinoma
- 1% Others

Risk Factors

- Gene abnormalities
- Chemical exposure
- Chronic irritation

Risk Factors

- Gene abnormalities
 - Proto-oncogenes: Ras
 - Tumor suppressor genes: p53, pRB, p16, p21, p27
 - Cell cycle regulatory proteins: cyclin D1
 - Tumor-specific growth factor pathways, angiogenesis and COX-2

Risk Factors

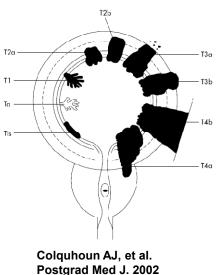
- Chemical exposure
 - <u>Tobacco</u> (rich in aromatic amines and acrolein)
 - Industrial contact to chemicals, plastics, coal, tar, asphalt, aromatic amines, aniline dyes, nitrites, and nitrates
 - Ifosfamide and Cyclophosphamide (long-term use)
 - Analgesic abuse, particularly phenacetin

Risk Factors

- Chronic irritation
 - Indwelling catheters, calculi (SCC)
 - Schistosoma haematobium (SCC, TCC)
 - Irradiation (SCC)

Signs and Symptoms

- Hematuria
 - Gross or microscopic
- Irritative symptoms
 - Frequency
 - Dysuria
 - Urgency
- Bladder outlet obstruction
- Ureteral colic


Physical Findings

- Palpable mass
- Bladder fixation to the pelvic wall
- Prostate induration
- Related to metastatic disease

Diagnostic Testing

- Urine Cytology (Sensitivity 67%, specificity 96%)
- Cystoscopy
 - Transuretheral resection of bladder tumor (TURBT)
 - Ureteroscopy
 - Retrograde pylography
- Radiographic Imaging (CT, MRI, IVP)
- Bone Scan (if elevated Alk Phos or bone pain)

TNM Staging of Bladder Cancer

Postgrad Med J. 2002

TNM Staging, cont.

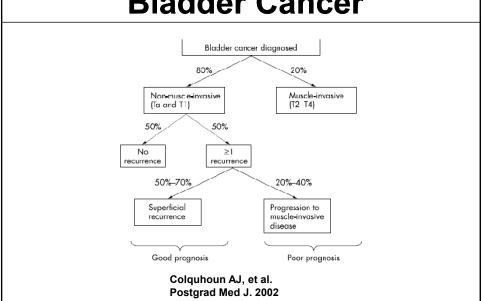
- Nodal disease
 - N1 Single regional LN mets in the true pelvis (hypogastric, obturator, external iliac, or presacral LN)
 - **N2** Multiple regional LN mets in the true pelvis
 - N3 LN metastasis to the common iliac LNs

- **Metastatic disease**
 - M0 no distant mets
 - M1 distant mets

American Joint Committee on Cancer (AJCC); 7th ed., 2010

TNM Staging, cont.

- 0 Ta, Tis
- I T1 only
- II T2a, T2b
- III T3a, T3b (perivesical tumor)
 T4a (prostate, uterus or vagina)
- IV T4b (pelvic or abdominal wall) Any N or M


Stages at Presentation

- 75% Superficial cancer
- 20% Muscle-invasive cancer
- 5% Metastatic disease

Location	apple	Τ -	И -	M	Survival (5 yrs)
युगक्ता (दिहा।	Na Pa	la lis	710	MO	> 30 %
Landna	ı	Tt	710	פומ	59-59 %
Enly Viussie	u	T2a	719	พเอ	39-59 %
nasb mrzeja	u	T19	719	פומ	30-40 %
Parivasical Fat	Ш	T 3	710	פומ	15-25 %
Lymph Nodes	N	Any	711 3	Mio	5-20 %
Matestalis	N	Any T	Any N	MIT	< 2 %

AJCC Cancer Staging, 1998

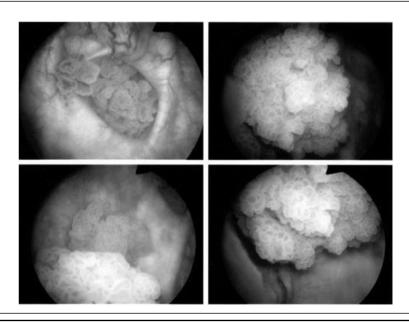
Superficial Bladder Cancer

Kamal Pohar, MD, FRCSC
Assistant Professor
Department of Urology
The James Cancer Hospital and
The Ohio State University Wexner Medical Center

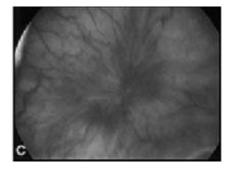
Objectives

- Superficial Bladder Cancer
 - Surgical management
 - Prevention of recurrence and progression
 - Intravesical chemotherapy
 - Intravesical immunotherapy
 - Surveillance: Follow-up and early detection of recurrence

Bladder Cancer Staging Superficial Cancer

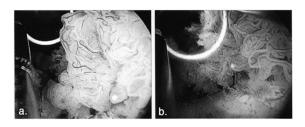

American Joint Committee on Cancer (AJCC)
TNM Staging System For Bladder Cancer

Primary Tumor (T)

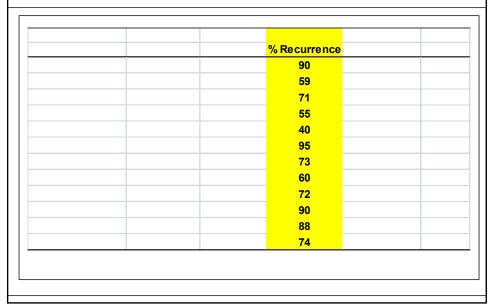

- TX Primary tumor cannot be assessed
- TO No evidence of primary tumor
- Ta Noninvasive papillary carcinoma
- Tis Carcinoma in situ: "flat tumor"
- T1 Tumor invades subepithelial connective tissue
- T2 Tumor invades muscle
 - T2a Tumor invades superficial muscle (inner half)
 - T2b Tumor invades deep muscle (outer half)
- T3 Tumor invades perivesical tissue
 - T3a Microscopically
 - T3b Macroscopically (extravesical mass)
- T4 Tumor invades any of the following: prostate, uterus, vagina, pelvic wall, abdominal wall
 - T4a Tumor invades prostate, uterus, vagina
 - T4b Tumor invades pelvic wall, abdominal wall

AJCC Cancer Staging Manual 7th Edition

Papillary Bladder Tumors



Flat Bladder Tumors (Carcinoma in situ (CIS))


■_Most often is a flat red spot(s) in the bladder

Superficial Bladder Tumors Most Are Cured Endoscopically

- Transurethral resection (TUR) based on thermal energy
- May require more than one procedure for larger tumors

Cancer recurrence in the bladder This is the real problem

When the cancer comes back it may be worse This is not as common but worsens prognosis

% Progression
4
<mark>18</mark>
2.4
3
7
39
16
10
25
52
39
30

European Organization for Research and Treatment of Cancer Tables to Predict Bladder Cancer Recurrence and Progression

Predicting Recurrence and Progression in Individual Patients with Stage Ta T1 Bladder Cancer Using EORTC Risk Tables: A Combined Analysis of 2596 Patients from Seven EORTC Trials

Richard J. Sylvester **, Adrian P.M. van der Meijden $^{\rm b}$, Willem Oosterlinck $^{\rm c}$, J. Alfred Witjes $^{\rm d}$, Christian Bouffioux $^{\rm c}$, Louis Denis $^{\rm f.1}$, Donald W.W. Newling $^{\rm g.2}$, Karlheinz Kurth $^{\rm h.3}$

European Urology 49:466,2006

Recurrence and Progression Superficial Bladder Cancer

Factor	Recurrence	Progression
Number of tumors		
Single	0	0
2 to 7	3	3
≥8	6	3
Tumor size		
<3 cm	0	0
≥3 cm	3	3
Prior recurrence rate		
Primary	0	0
≤1 rec/yr	2	2
>1 rec/yr	4	2
T category		
Ta	0	0
T1	1	4
CIS		
No	0	0
Yes	1	6
Grade		
G1	0	0
G2	1	0
G3	2	5
Total score	0-17	0-23

European Urology 49:466,2006

KATINETIZ AUTUN

**DEPARTMENT of Undogy, Jenon Boach Hospital, 's-Hertogenbosch, The Metherlands

**Department of Undogy, Intheratly Hospital Ghent, Ghent, Belgium

**Department of Undogy Rathoud Intheresity Medical Center, Nijmegor, The Netherlands

**Department of Undogy, Adabadhen General Hospital, Antauery, Belgium

**Department of Undogy, Adabadhen General Hospital, Antauery, Belgium

**Department of Undogy, Netherlands

**Department of Undogy, Pree University Medical Center, Amsterdam, The Netherlands

**Department of Undogy, Academic Medical Center, Amsterdam, The Netherlands

Recurrence	and P	rogressio	n
Superficial	Bladd	ler Cance	r

	Probability of recurrence		Recurrence risk group	
	at 1 yr % (95% CI)	at 5 yr % (95% CI)		
Recurrence score				
0	15 (10-19)	31 (24-37)	Low risk	
1-4	24 (21-26)	46 (42-49)	Intermediate risk	
5-9	38 (35-41)	62 (58-65)	Intermediate risk	
10-17	61 (55-67)	78 (73–84)	High risk	
	Probability o	f progression	Progression risk group	
	at 1 уг % (95% CI)	at 5 yr % (95% CI)		
Progression score				
0	0.2 (0-0.7)	0.8 (0-1.7)	Low risk	
2-6	1 (0.4-1.6)	6 (5-8)	Intermediate risk	
7-13	5 (4-7)	17 (14-20)	High risk	
14-23	17 (10–24)	45 (35–55)	High risk	
CI = confidence interval.				
	European Urolog	ıv 49:466.2006		

FOCUS

 Review of medical evidence on therapeutic opportunities to reduce tumor recurrence in superficial bladder cancer patients

Therapeutic Opportunities Reducing Bladder Cancer Recurrence

- Persistent/unrecognized tumor at the time of endoscopic resection of grossly visible tumors (residual cancer)
- Tumor implantation
- Urothelial Field Change

Residual Cancer After Endoscopic Resection

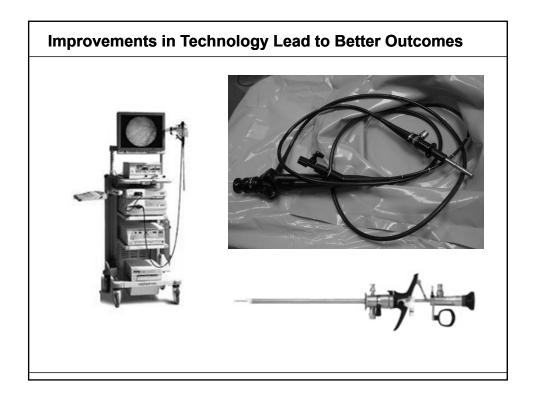
Variability in the Recurrence Rate at First Follow-up Cystoscopy after TUR in Stage Ta T1 Transitional Cell Carcinoma of the Bladder: A Combined Analysis of Seven EORTC Studies

Brausi, Maurizio; Collette, Laurence; Kurth, Karlheinz; van der Meijden, Adrian P.; Oosterlinck, Wm; Witjes, J.A.; Newling, Donald; Bouffioux, Christian; Sylvester, Richard J.

European Urology 41: 523 - 531, 2002

Promise of Improved Diagnostics

A New Generation of Optical Diagnostics for Bladder Cancer: Technology, Diagnostic Accuracy, and Future Applications

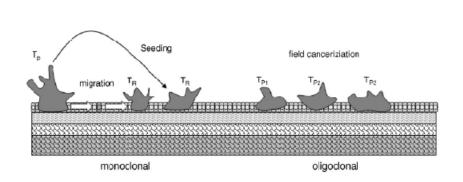

Evelyne C.C. Cauberg a,* , Daniël M. de Bruin b , Dirk J. Faber b , Ton G. van Leeuwen b , Jean J.M.C.H. de la Rosette a , Theo M. de Reijke a

^a Department of Urology, Academic Medical Center Amsterdam, Amsterdam, The Netherlands

- Photodynamic Diagnosis (PDD) Fluorescence (ALA or HAL)
- Narrow-band Imaging (NBI)
- Optical Coherence Tomography (OCT)

European Urology 56:287-297,2009

^b Department of Biomedical Engineering and Physics, Academic Medical Center Amsterdam, Amsterdam, The Netherlands



Repeat Endoscopic Resection Within 6 Weeks Reduces Tumor Recurrence

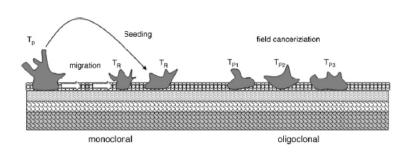
 Many studies confirm for high grade tumors a repeat endoscopic resection of the area where the original tumor was removed often removes residual microscopic cancer and leads to better clinical outcomes

Tumor Implantation

Theories of Why Bladder Cancers Recur

Hoglund M, Seminars in Cancer Biology 17:225,2007

Single Dose Instillation of Chemotherapy After Surgery In The Bladder


Single Dose Instillation of Chemotherapy In the Recovery Room After TUR

- Patients with a single tumor in the bladder reduced their risk of recurring from 47.1% to 35.8%
- Patients with more than one tumor in the bladder reduced their risk of recurring from 81.5% to 65.2%

Journal of Urology 171:2186-2190,2004

Urothelial Field Change

Field Defect – Slaughter's Concept of Field Cancerization

Hoglund M, Seminars in Cancer Biology 17:225,2007

Urothelial Field Change

- Rationale for the use of intravesical chemotherapy and immunotherapy
- Drugs administered in liquid form via a urethral catheter allowing direct instillation in to the bladder
- Drugs have a direct effect on the bladder epithelium (urothelium)

Reducing Risk of Recurrence Intravesical Chemotherapy Prophylaxis

Intravesical Chemotherapeutic Agents*

Thiotepa

Doxorubicin

Ethoglucid

Mitomycin C

Epirubicin

Valrubicin

Gemcitabine

*Wide range of doses and schedules – most common weekly for 6-8 weeks

Reducing Risk of Recurrence Intravesical Immunotherapy Prophylaxis (BCG)

History of BCG Vaccine

- •BCG initially isolated by Calmette and Guerin (Pasteur Institute)
- •Complete attenuation achieved through 231 sequential passages over 13 years (Mycobacterium bovis)
- •Immunologists discovered the stimulatory effect of mycobacteria on the immune response to heterologous antigens (tumor cells)
- First tested in bladder cancer in the early 1980's

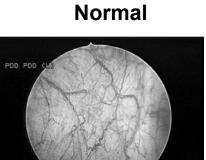
New England Journal of Medicine 290:1413,1974

Bladder Cancer Recurrence Risk Adapted Groups To Determine What Drug Is Best

Low Risk

Intermediate Risk

High Risk


Maintenance Intravesical Therapy Reduces Cancer Recurrence

- Some studies support periodically giving additional intravesical chemotherapy or BCG when the patient is tumor free for an extended period of time (1-3 years)
- As an example maintenance included 3 successive weekly intravesical instillations of BCG at 3,6,12,18,24,30 and 36 months (SWOG 8507)

Bladder Cancer Follow-up Detecting Recurrences

Office Cystoscopy

Bladder Cancer Follow-up Detecting Recurrences

• Urinary Tumor Markers

Urine cytology UroVysion FISH NMP-22 BTA

Summary of Typical Timeline of Management Superficial Bladder Cancer Patient

- Tumors removed by endoscopic resection in OR leading to cure
- One dose of intravesical chemotherapy given in the recovery room after surgery
- High probability of bladder cancer recurrence can be reduced by administering weekly intravesical chemotherapy or immunotherapy for a few weeks
- Maintenance intravesical therapy can further reduce the probability of cancer recurrence when the patient is tumor free

Muscle-Invasive and Advanced Bladder Cancer

Amir Mortazavi, MD
Assistant Professor
Department of Internal Medicine
Division of Medical Oncology
The Ohio State University Wexner Medical Center

Objectives

- Muscle-invasive and Advanced Bladder Cancer
 - Management of metastatic disease
 - Management of muscle-invasive disease

Metastatic Disease

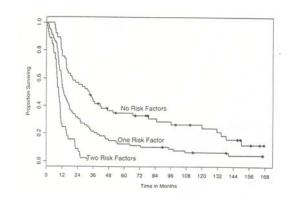
Introduction

- Metastatic sites: regional and distant lymph nodes, lungs, bones, liver, brain, skin and elsewhere.
- Median survival with Best Supportive Care:
 4-6 months
- Median survival with cisplatin-based combination chemotherapy: 12-14 months, 20% 3-yr survival

Introduction

- Many chemotherapy drugs have shown activity in bladder cancer, such as cisplatin, carboplatin, gemcitabine, methotrexate, vinblastine, doxorubicin, paclitaxel, docetaxel, ifosfamide, etc.
- TCC is a chemosensitive solid tumor
 - Phase II clinical trials: RR 70-80%
 - Phase III clinical trials: RR 50%
- Short duration of response: 4-6 mo

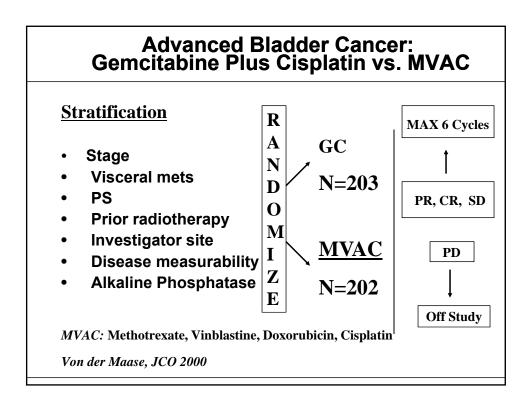
Prognostic Factors & Survival Univariate and Multivariate Analysis


(n=203) Bajorin, JCO 1999

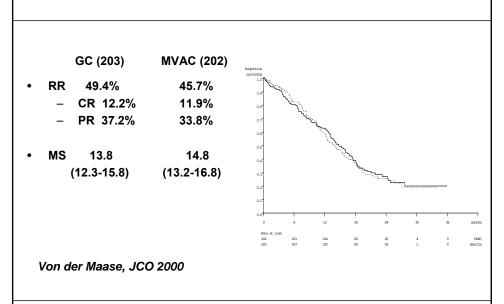
Prognostic Factors:

- 1) Visceral Metastases (bone, liver, lung)
- 2) Performance status (KPS) (<80%)

# of PF	MS (mo)	CR (%)
0	33	35
1	13.4	11
2	9.3	0


p = 0.0001

MSKCC data


Systemic Chemotherapy

- Till 2000, MVAC, the combination chemotherapy of methotrexate, vinblastine, doxorubicin, and cisplatin, was the standard of care for metastatic bladder cancer, based on phase III⁽¹⁾ and randomized phase III^(2, 3) studies.
 - (1) Sternberg C, et al. J Urol 1988
 - (2) Loehrer et al. *JCO* 10:1066, 1992
 - (3) Logothetis et al. JCO 8:1050, 1990

GC vs. MVAC G3/4 Toxicities				
		GC	MVAC	
•	Neutropenia (Grade 3/4)	71%	82%	
	Neutropenic sepsis	1%	12%	
	Febrile neutropenia	1.5%	13.4%	
	Thrombocytopenia	57%	21%	
	Mucositis	1%	22%	
	Alopecia	11%	55%	
•	Nausea/vomiting	22%	21%	
•	Drug-toxicity death rate	1%	3%	

GC vs. MVAC Response and Survival

Summary

- Cisplatin-based combination chemotherapy improves survival for patients with advanced bladder cancer.
- First-line treatment
 - Good PS, adequate GFR: Cisplatin-based
 - Poor PS, declined GFR, elderly: Carboplatin-doublets, or single agent
- Second-line treatment (Cisplatin-resistant)
 - Gemcitabine, paclitaxel, docetaxel, ifosfamide, nabpaclitaxel, vinflunine, and pemetrexed.

New agents

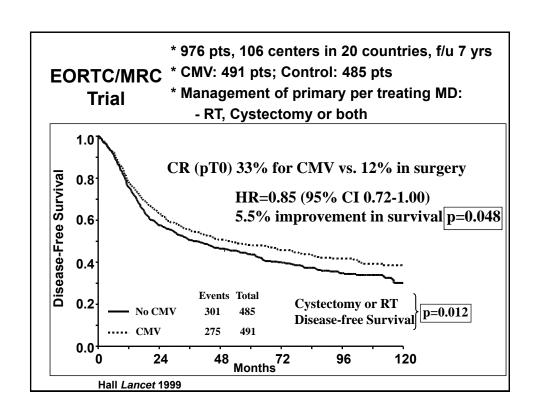
- Immune Modulation (Tumor Vaccines)
- Pemetrexed (Sweeney, 2006 JCO)
- Trastuzumab (Hussain, 2007 JCO; Single-agent CALGB study)
- Gefitinib (Galsky, 2007 Invest New Drugs; Philips, 2009 Ann Oncol)
- Erlotinib (Ongoing studies)
- Sorafenib (Sridhar, 2008 ASCO GU, #340)
- Sunitinib (Gallagher, 2007 ASCO, #5080; Bellmunt, 2008 ASCO GU, #291)
- Bevacizumab (With GC: Ongoing CALGB study; Hahn, 2009 ASCO, #5018)
- Vinflunine (Vaughn, 2008 ASCO GU, #316)
- FGFR3 Inhibitors (Ongoing studies)
- Histone Deacetylase Inhibitors (Vorinostat, AR42)

Muscle-Invasive Disease

Treatment decisionmaking!

- Who needs cystectomy?
- Who can be cured with bladder preservation?
- Who needs multimodality treatment (neoadjuvant/adjuvant treatments)?

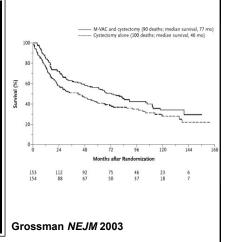
Surgical treatment outcome


- In the U.S., the Gold Standard Treatment of muscle-invasive disease is radical cystectomy with bilateral pelvic lymph node dissection.
- After surgery, 40-50% of these patients develop metastases within 2-5 years and most die of their disease.

How to improve outcome?

- Bladder cancer is a radio- and chemosensitive disease.
- Cisplatin-based chemotherapies have 40-75% RRs with 12-20% CRs.
- Multimodality treatment with neoadjuvant/adjuvant chemotherapy and/or radiation therapy can potentially improve outcome.

Randomized Neoadjuvant Trials


Christia	Neoadjuvant	Standard	Patients	C
Study	Arm	Arm	(N)	Survival
Cisplatin chemotherapy				
Australia/UK ¹⁷	Cis/RT	RT	255	No difference
Canada/NCI18	Cis/RT or preop	RT or preop	99	No difference
	RT+cystectomy	RT+cystectomy		
Spain (CUETO)19	Cis/cystectomy	Cystectomy	121	No difference
Combination chemothera				
EORTC/MRC ¹¹	CMV/RT or cystectomy	RT or cystectomy	976	5.5% difference in
				favor of CMV
SWOG Intergroup ²⁰	M-VAC/cystectomy	Cystectomy	298	Benefit with M-VAC
				(P = 0.06)
Italy (GUONE)15	M-VAC/cystectomy	Cystectomy	206	No difference
Italy (GISTV)21	M-VEC/cystectomy	Cystectomy	171	No difference
Genoa ²²	Cis/5-FU/RT/cystectomy	Cystectomy	104	No difference
Nordic I ²⁴	ADM/Cis/RT/cystectomy	RT/cystectomy	311	No difference, 15%
				benefit with ADM +
				Cis in T3-T4a
Nordic II ¹⁶	MTX/Cis/cystectomy	Cystectomy	317	No difference
Abol-Enein et al.23	CarboMV/cystectomy	Cystectomy	194	Benefit with CarboMV
Ctomborn Hralon	2007			
Sternberg <i>Urolog</i>	y 200 <i>1</i>			

SWOG Intergroup

- * 307 pts, 1987-1998; 126 centers in the U.S., f/u 8.7 yrs
- Intergroup * MVAC + Surgery: 153 pts, Surgery: 154 pts
 - * Management of primary: Radical Cystectomy

	MVAC	Surgery	P-value	
Median Survival	77 mos	46 mos	0.05	
5yr Survival	57%	43%	0.06	
рТО	38%	15%	<0.001	
Death HR	1.33 (33% reduction in mortality)			
Disease- specific HR	1.66 0.00		0.002	

Meta-analysis Studies

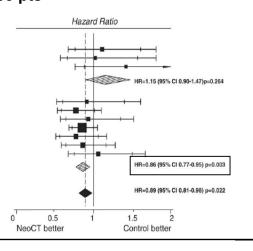
NEOADJUVANT CHEMOTHERAPY FOR TRANSITIONAL CELL CARCINOMA OF THE BLADDER: A SYSTEMATIC REVIEW AND META-ANALYSIS

ERIC WINQUIST, **† TRICIA S. KIRCHNER, ROANNE SEGAL, JOSEPH CHIN‡ AND HIMU LUKKA§ ON BEHALF OF THE GENITOURINARY CANCER DISEASE SITE GROUP OF CANCER CARE ONTARIO PROGRAM IN EVIDENCE-BASED CARE PRACTICE GUIDELINES INITIATIVE||

Winquist E, et al. J Urol 171:561, 2004

- 8 randomized trials with cisplatinbased combination chemotherapy
 - HR for death 0.87 (p=0.006) and 6.5% absolute improvement in fiveyear OS (50% to 56.5%).

Meta-analysis Studies


Neoadjuvant Chemotherapy in Invasive Bladder Cancer: Update of a Systematic Review and Meta-Analysis of Individual Patient Data

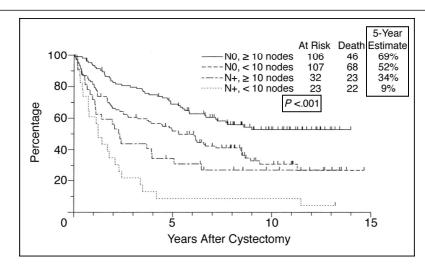
Advanced Bladder Cancer (ABC) Meta-analysis Collaboration Eur Urol 48:202, 2005

Meta-analysis Group, Medical Research Council Clinical Trials Unit, 222 Euston Road, London NWI 2DA, UK

11 randomized trials, 3005 pts

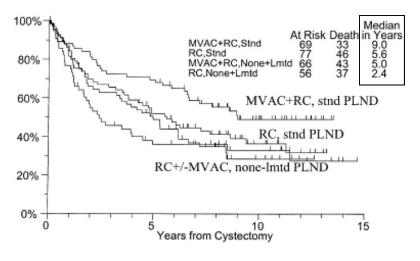
	(no. events/no. entered)				
	CT	Control	O-E	Variance	
Single agent platinu	m				
Wallace [2]	59/83	50/76	2.74	27.18	
Martinez-Pineiro [3	3] 43/62	38/59	0.33	20.11	
Raghavan [2]	34/41	37/55	5.85	16.51	
Sub-total	136/186	125/190	8.92	63.80	
Platinum-based con	nbinations				
Cortesi unpublishe	d 43/82	41/71	-1.87	20.84	
Grossman [9]	98/158	108/159	-13.61	51.00	
Bassi [5]	53/102	60/104	-1.95	28.13	
MRC/EORTC [6]	275/491	301/485	-23.69	143.61	
Malmström [8]	68/151	84/160	-9.97	37.94	
Sherif [8]	79/158	90/159	-6.37	42.18	
Sengeløv [7]	70/78	60/75	1.79	31.96	
Sub-total	686/1220	744/1213	-55.67	355.65	
Total	822/1406	869/1403	-46.75	419.45	

Meta-analysis Studies


Neoadjuvant Chemotherapy in Invasive Bladder Cancer: Update of a Systematic Review and Meta-Analysis of Individual Patient Data

Advanced Bladder Cancer (ABC) Meta-analysis Collaboration

Meta-analysis Group, Medical Research Council Clinical Trials Unit, 222 Euston Road, London NWI 2DAEUT Urol 48:202, 2005


- 11 randomized trials, 3005 pts
- Overall survival benefit:
 - 14% reduction in the risk of death (HR=0.86, p=0.003)
 - 5% (45% to 50%) at 5 years
- Disease-free survival benefit:
 - 22% reduction in the risk of recurrence (HR=0.78, p<0.0001)
 - 9% absolute improvement at 5 years

The impact of surgical factors

Herr, et al. JCO 22:2781, 2004

The impact of optimal combined modality treatment: Analysis of INT-0080

Herr, et al. Journal of Urology 177:437, 2007

Summary

- The quality of radical cystectomy and the extent of pelvic lymph node dissection have a major impact on invasive bladder cancer survival*
- Radical surgery alone does not provide long-term survival for about half of the patients with invasive bladder cancer

*Elting LS, et al. Cancer 104:975, 2005
*Joudi Fn, et al. Journal of Urology 174:432, 2005

Summary

 Adjuvant cisplatin-based chemotherapy (~4 cycles) can be offered to high-risk patients (>T2) and it improves disease-free survival and prevent recurrence, but its benefit for overall survival, yet to be determined (level 2)

Summary

 Neoadjuvant cisplatin-based combination chemotherapy can be delivered safely, significantly improves P0 rate (no evidence of cancer at cystectomy), and disease-free and overall survivals (level 1 evidence)

In Conclusion

 Patients with muscle-invasive bladder cancer require multimodality care and the optimal curative strategy for most of them is neoadjuvant cisplatin-based combination chemotherapy followed by radical cystectomy and complete pelvic lymph node dissection