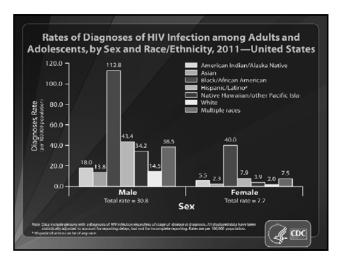
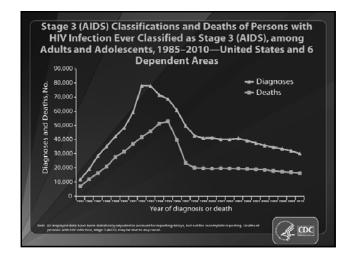
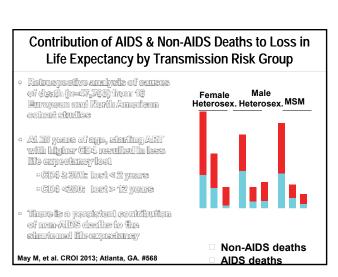
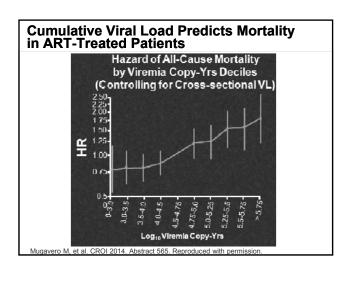
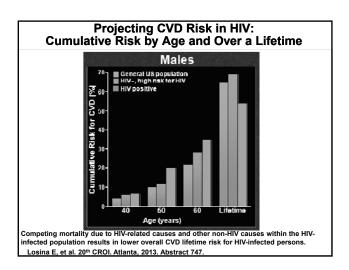

HIV/AIDS

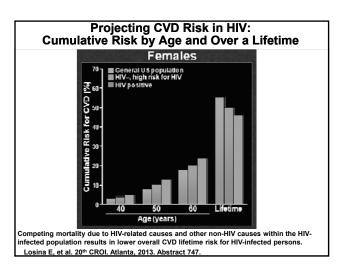

Susan L. Koletar, MD
Division Director, Infectious Diseases
Professor of Internal Medicine
Department of Internal Medicine
The Ohio State University Wexner Medical Center

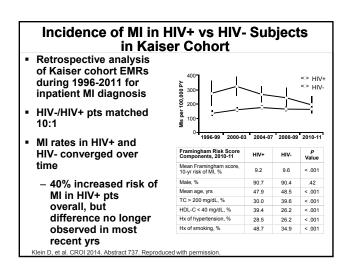


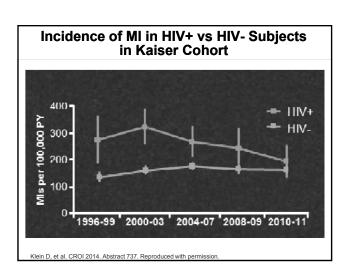





Cumulative Viral Load Predicts Mortality in ART-Treated Patients Hazard of All-Cause Mortality **Estimated cumulative** by Viremia Copy-Yrs Deciles VL (viremia copy-yrs) assessed in 33,563 pts (Controlling for Cross-sectional VL) at 17 sites of ART **Cohort Collaboration** ¥ 1.25 After adjusting for age, sex, risk group, BL and time-related VL, and cohort, viremia copyyrs stratum predicted - All-cause mortality - AIDS-related mortality Mugavero M, et al. CROI 2014. Abstract 565. Reproduced with permission.




Normalization of CD4/CD8 Ratio and **Non-AIDS Events** 3,236 pts on ART with virologic suppression Probability of CD4/CD8 Time Normalization (95% CI) 4.4 (3.7-5.2) 1 yr - 458 pts reached CD4/CD8 ≥ 1 11.5 (10.2-13.0) 2 yrs Median time to normalization: 2 yrs 10.1 yrs 29.4 (26.7-32.4) Younger pts, those starting ART in recent yrs, and those with higher CD4+ counts more likely to normalize Current Incidence of Clinical CD4/CD8 Progression* (95% CI) < 0.30 4.8 (3.9-5.9) Current CD4/CD8 ratio predicted incidence of clinical progression 2.4 (1.9-3.1) > 0.45 2.0 (1.7-2.3) Remained predictive after adjusting for current CD4+ cell *serious non-AIDS-related events (CV or cancer) or all-cause death Mussini C, et al. /Icona Study Group. CROI 2014. Abstract 753


Common Co-morbid Conditions in HIV-infected Persons

- Cardiovascular diseases
- Metabolic complications
 - lipids/diabetes
- Bone disorders
- Renal
- Liver
- Malignancies

Incidence of MI in HIV+ vs HIV- Subjects in Kaiser Cohort			
Framingham Risk Score Components, 2010-11	HIV+	HIV-	P Value
Mean Framingham score, 10-yr risk of MI, %	9.2	9.6	< .001
Male, %	90.7	90.4	.42
Mean age, yrs	47.9	48.5	< .001
TC > 200 mg/dL, %	30.0	39.6	< .001
HDL-C < 40 mg/dL, %	39.4	26.2	< .001
Hx of hypertension, %	28.5	26.2	< .001
Hx of smoking, %	48.7	34.9	< .001

Excess Burden of Cancer A	mong HIV-Infe	cted Po	ersons
• Estimated cancer rates in HIV	Estimated Total & Excess Cancer among HIV-infected Persons in the U.S. (2010)		
- HIV/AIDS Cancer Match Study	Type of Cancer Ex (Total Number) of	pected # Cancers	Excess or Deficit (%)
Expected cancer rates for general population from SEER program	NHL (1645)	203	87.7
(Surveillance, Epidemiology, and End Results)	KS (912)	2	99.8
	Lung (837)	401	52.0
Excess = excess/total Deficit = deficit/expected	Anus (764)	20	97.4
	Prostate (574)	969	-40.7
50.4 % excess cancers in HIV-infected - most occurred among males (51.5%) - largest excess among ages 40-49	Liver (389)	106	72.7
	Colorectal (357)	379	-5.8
	Hodgkin's lymphoma (317)	29	90.0
	QBreast (177)	303	-41.6
Robbins et al. 12st CROI Boston 2014 #707		•	

HIV and Cancer-Specific Mortality in the U.S. (1996-2010)

- Retrospective analysis from 5 US Cancer registries (HIV/AIDS Cancer Match Study)
 Cancer specific mortality by HIV status
- HIV-infected cancer patients experienced higher cancer-specific mortality

Adjusted Hazard Ratios for Cancer-Specific Mortality (HIV Infected vs Uninfected)

	HR (95% CI)	
Oral cavity/pharynx	1.50 (1.07-2.09)	
Larynx	1.92 (1.23-2.98)	
Pancreas	1.63 (1.26-2.10)	
Colon and rectum	1.69 (1.36-2.11)	
Lung	1.28 (1.17-1.40)	
Melanoma	1.76 (1.10-2.79)	
Breast	2.71 (2.10-3.50)	
Prostate	1.83 (1.16-2.87)	

Liver, anal, cervical cancers had suggested elevations

Coghill et al 21st CROI, Boston 2014 #99

HIV and the Older Patient

- In the U.S., approximately 30% of HIVinfected persons are ≥50 years of age
- Aging-related comorbidities may complicate management of HIV
- HIV may increase risk of comorbidities and may accelerate the aging process
- Limited data on effects of ARVs in older persons (eg, adverse effects, drug-drug interactions)

HIV and the Older Patient: HIV Risk, Diagnosis, and Prevention

- Reduced mucosal and immunologic defenses and changes in risk behaviors may lead to increased risk of HIV acquisition and transmission
- HIV screening rates in older persons are low
- Older persons may have more advanced HIV at presentation and ART initiation
 - Screen for HIV per CDC recommendations
 - Sexual history, risk-reduction counseling, screening for STIs (as indicated) are important to general health care for HIV-infected and HIV-uninfected older persons

Recommendations for HIV Testing

- HIV screening is recommended for patients in all health-care settings
 - Patient should be notified that testing will take place unless patient declines (opt-out testing)
- Persons at high risk for HIV should be screened at least annually
- HIV screening should be included in the routine panel of prenatal screening for pregnant women
- Neither separate written consent nor prevention counseling should be required

MMWR 2006;55(R14):1-17.

HIV/AIDS

John Davis, MD, PhD
Associate Dean for Medical Education
Assistant Professor of Clinical Internal Medicine
Department of Internal Medicine
Division of Infectious Diseases
The Ohio State University Wexner Medical Center

Treatment

2014 DHHS Guidelines: When to Start ART				
Clinical Category	CD4 Cell Count (cells/mm³)	2014 DHHS Guidelines	Strength-Quality	
AIDS-defining illness	Any value	Treat	A-I	
	<350	Treat	711	
Asymptomatic	350 to 500	Treat	A-II	
	>500	Treat	B-III	
Transmission prev:				
Pregnancy	T	A-I		
Sexual (heterosexual, other)	Any value	Treat	(A-I, A-III)	
	http:	//aidsinfo.n	ih.gov 27 May 2014	

Goals of Treatment

- · Decrease in morbidity/mortality
 - Improvement in quality of life
- Virologic suppression
 - VL<400 at 24wks
 - VL<50 (ND) at 48wks
 - Anything else = virologic failure
- Immunologic recovery (reconstitution)
 - Increase in CD4+ number and/or percentage
 - Anything else = immunologic failure
 - Especially decline in CD4+ to <200
- · Surveillance for side effects

http://aidsinfo.nih.gov/

Current ARV Medications

NRTI

- Abacavir (ABC)
- Didanosine (ddl)
- Emtricitabine (FTC)
- Lamivudine (3TC)
- Stavudine (d4T)
- Tenofovir (TDF)
- Zidovudine (AZT, ZDV)

NNRTI

- Delavirdine (DLV)
- Efavirenz (EFV)
- Etravirine (ETR)

Protease Inhibitor (PI)

- Atazanavir (ATV)
- Darunavir (DRV)
- Fosamprenavir (FPV)
- Indinavir (IDV)
- Lopinavir (LPV)
- Nelfinavir (NFV)
- Ritonavir (RTV)
- Saquinavir (SQV)
- Tipranavir (TPV)
- * EVG currently available only in coformulation with cobicistat

(COBI)/ TDF/FTC

■ Nevirapine (NVP)

Rilpivirine (RPV) www.aidsetc.org May 2014

Current ARV Medications

Integrase Inhibitor (II)

- Dolutegravir (DTG)
- Elvitegravir* (EVG)
- Raltegravir (RAL)

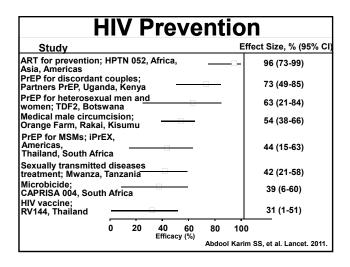
Fusion Inhibitor

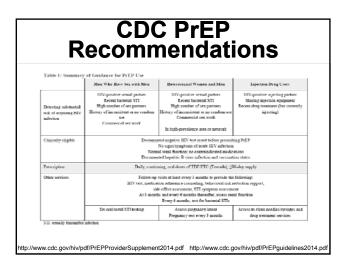
■ Enfuvirtide (ENF, T-20)

CCR5 Antagonist

Maraviroc (MVC)

* EVG currently available only in coformulation with cobicistat (COBI)/ TDF/FTC


www.aidsetc.org May 2014


2014 DHHS Guidelines: Regimens for Treatment-Naïve Patients		
Recommended	• EFV • ATV/r, DRV/r (QD) • DTG, RAL, EVG/cobi • DTG + ABC/3TC (1) [Recommendations for pregnant women differ; see (a)]	
For patients with VL<100,000	• EFV + ABC/3TC (1) • RPV + TDF/FTC (for patients with CD4 > 200) • ATV/r + ABC/3TC (1)	
Alternative Regimens	• DRV/r + ABC/3TC (1) • LPV/r + (ABC/3TC or TDF/FTC) (1) • RAL + ABC/3TC (1)	
Notes	1 – only in patients who are HLA-B*5701 negative 2 – 3TC and FTC may be used interchangeably throughout	

Advances

- Comparative effectiveness (1)
 - ATV/r vs DRV/r vs RAL (with TDF/FTC)
 - RAL superior, mostly d/t tolerability
- New agents (2)
 - Long-acting, injectable agents
 - Phase IIb, equivalent to TDF/FTC/EFV
- 1. Landovitz R, et al. CROI 2014. Abstract 85.
- 2. Margolis D, et al. CROI 2014. Abstract 91LB.

Prevention

Cure Research

Promising Studies

- · Adults "cured" of HIV
 - Patient with AML, s/p BMT
 - Remains ND off ART (1)
 - Others s/p BMT → relapse of HIV (2)
- · Infants "cured" of HIV
 - One in Mississippi, ND off ART (3)
 - One new infant, ND on ART (4)
- 1. N Engl J Med. 2009;360:692-8

3. CROI 2013. Abstract 48LB.

2. CROI 2014. Abstract 144LB

4. CROI 2014. Abstract 75LB

Promising Studies

- Failure of PrEP
 - Possibility of reduced seeding of reservoir (1)
- · Gene "editing"
 - Removal of co-receptor from CD4 cells by use of a Zn-finger endonuclease (2)

1. CROI 2014. Abstract 397LB.

2. N Engl J Med. 2014; 370(10):901-910.