Chronic Hepatitis C Natural History and Current Treatment 2013

William M. Lee, MD
Clinical Professor
Department of Internal Medicine
Division of Gastroenterology, Hepatology & Nutrition
The Ohio State University Wexner Medical Center

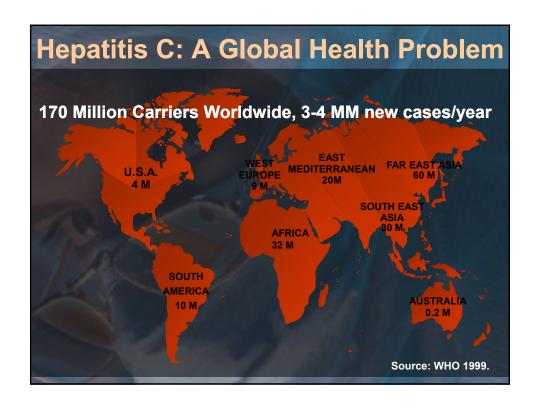
William M. Lee, MD
UT Southwestern Medical Center at Dallas

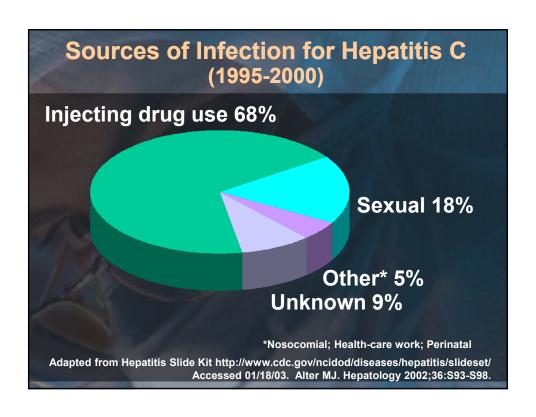
Financial Disclosures

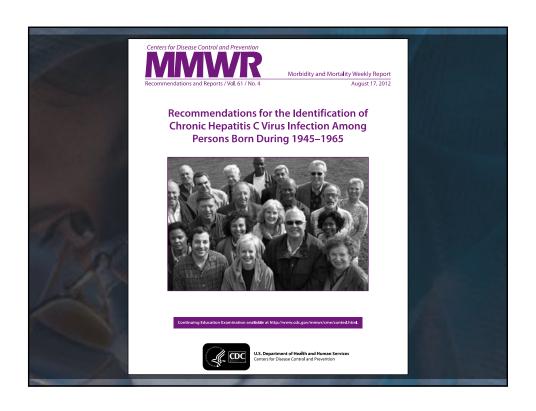
Research Support from Anadys, BMS, Gilead, Globeimmune, Merck, Novartis, Roche, Vertex Consulting: Cumberland, Novartis

AND

My presentation may possibly include discussion of off-label use of DAAs

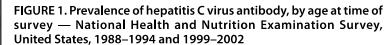

Outline of this talk

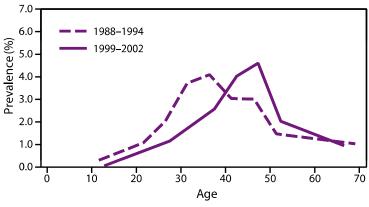

- Review Hep C 101: basic statistics
- Review the CDC Baby Boomer Directive
- Provide an overview to current Rx with the new DAAs
- Give a glimpse of the future, which happens to be just around the corner


Hepatitis C Virus (HCV)

- Discovered in 1989 as a small RNA bloodborne virus with a large reservoir of chronic carriers worldwide
- Major cause of post-transfusion hepatitis prior to 1992
- Major cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma worldwide
- Prevalence is 1.8% of the US population, 4 million
- 1990-2015: estimated 4-fold increase in the number of patients diagnosed with HCV in the United States

NIH Consensus Development Conference Panel Statement Management of Hepatitis C, 2002.

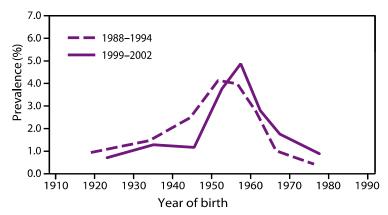




Recommendations for Identification of Chronic Hepatitis C Virus Infection Among Persons Born During 1945-1965

- Adults born during 1945-1965 should receive one-time testing for HCV without prior ascertainment of HCV risk.
- All persons with identified HCV infection should receive a brief alcohol screening and intervention as clinically indicated, followed by referral to appropriate care and treatment services for HCV infection and related conditions.

MMWR /August 17, 2012 / Vo1. 61 / No.4



Source: Armstrong GL, Wasley A, Simard EP, et al. The prevalence of hepatitis C virus infection in the United States, 1999 through 2002. Ann Internal Med 2006;144:705–14. Modified and reprinted with permission from Annals of Internal Medicine.

MMWR /August 17. 2012 / Vo1. 61 / No.4

FIGURE 2. Prevalence of hepatitis C virus antibody, by year of birth — National Health and Nutrition Examination Survey, United States, 1988–1994 and 1999–2002

Source: Armstrong GL, Wasley A, Simard EP, et al. The prevalence of hepatitis C virus infection in the United States, 1999 through 2002. Ann Internal Med 2006;144:705–14. Modified and reprinted with permission from Annals of Internal Medicine.

MMWR /August 17, 2012 / Vo1, 61 / No.4

Recommendations and Reports

TABLE 1. Number and prevalence of persons born during 1945–1970 positive for anti-HCV and with chronic HCV infection, by birth cohort — National Health and Nutrition Examination Survey, United States, 1999–2008

		Anti-HCV		Chronic HCV infection	
Birth cohort	U.S. population (in millions)*	No. (in millions)	(Weighted %) [†]	No. (in millions) [§]	(%)
1945–1965	84.2	2.74	(3.25)	2.06	76.6
1950-1970	89.2	2.89	(3.24)	2.17	80.6
1945-1970	105.1	3.15	(3.00)	2.36	87.3
1950-1965	68.3	2.47	(3.61)	1.85	69.9
1950-1960	45.6	1.83	(4.01)	1.37	52.3
1945-1949	13.2	0.21	(1.58)	0.16	6.7
1966-1970	20.9	0.41	(1.94)	0.30	10.8

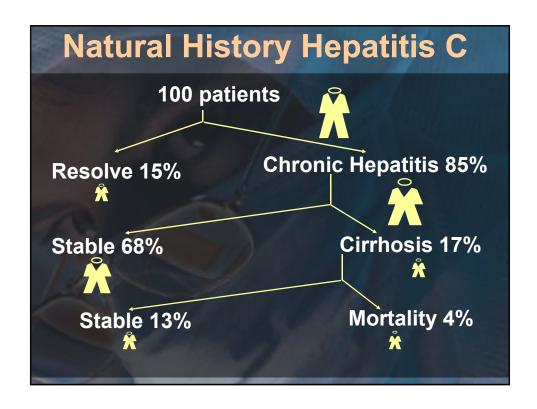
Abbreviations: HCV = hepatitis C virus; anti-HCV = antibody to hepatitis C virus.

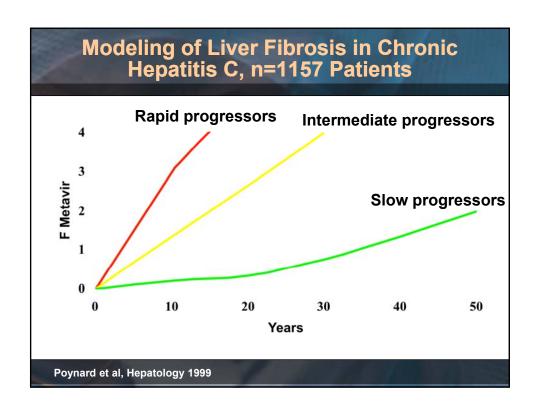
[†] Not adjusted by age or other covariates.

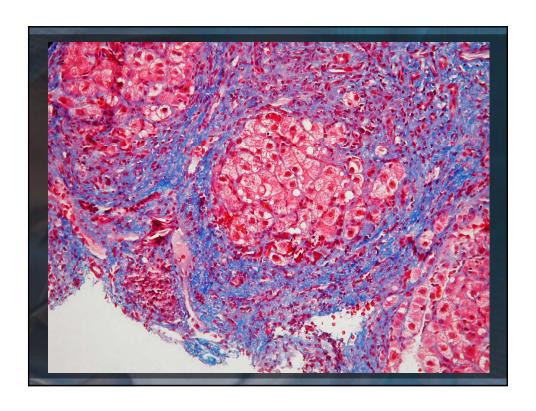
CDC

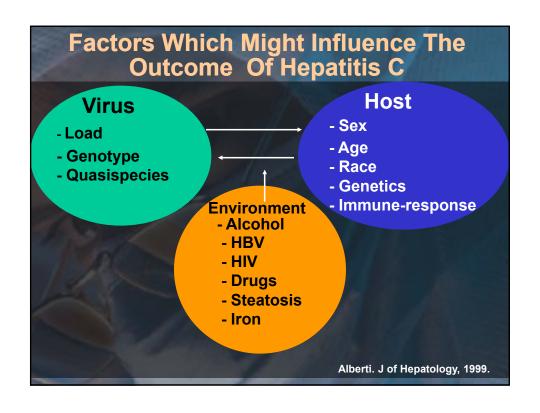
MMWR /August 17, 2012 / Vol. 61 / No.4

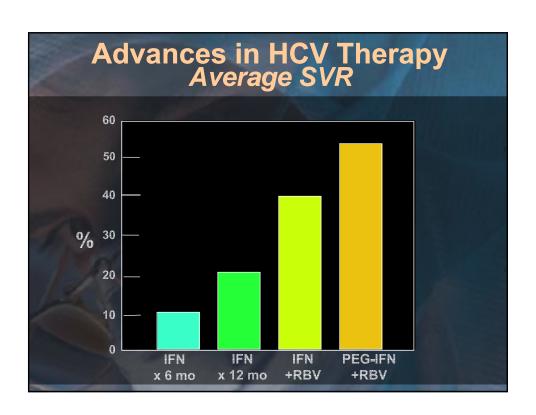
TABLE 2. Prevalence of anti-HCV among three birth cohorts, be and race/ethnicity* — National Health and Nutrition Examin Survey, United States, 1999–2008					
	An	ti-HCV (weighted	%)		
Characteristic	1945–1965	1950–1970	1945–1970		
Sex					
Male	4.34	4.12	3.89		
Female	2.19	2.34	2.14		
Race/ethnicity	K				
White, non-Hispanic	2.89	3.01	2.77		
Black, non-Hispanic	6.42	5.73	5.60		
Mexican American	3.26	2.56	2.71		
Abbreviation: anti-HCV	,	atitis C virus.			
* Not adjusted by age or	other covariates.				
by non-Hispanic w	hite males (4.0	5%) and Mex	ican-American		
males (3.41%).	`	,			
` ,	1.1				
Complicating h	ealth outcon	nes among F	ICV-infected		
persons born during	g 1945–1965 a	are a lack of he	alth insuranc		
(31.5%) and use of	0				

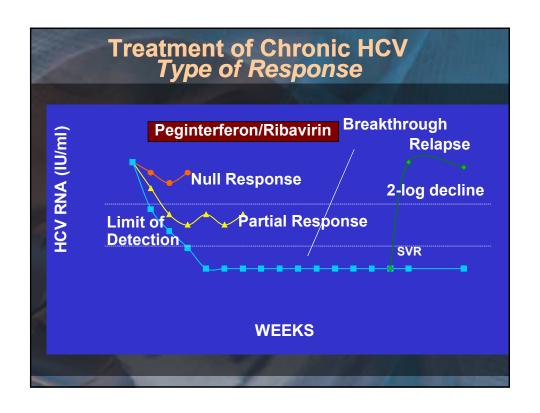

^{*} Source: U.S. Census Bureau. 2010 Census: Single years of age and sex: summary file 1, table PCT12. Available at http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_PCT12&prodType=table. Accessed April 27, 2012.

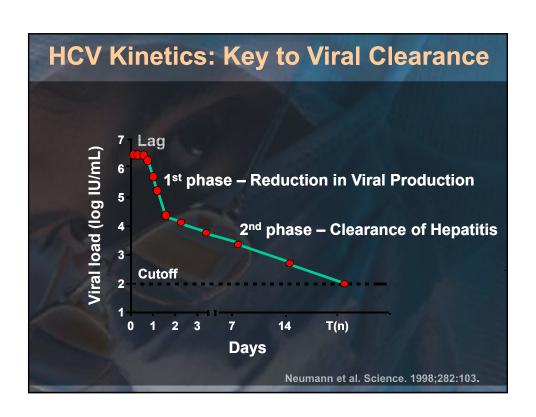

[§] An estimated 75% of anti-HCV-positive persons have chronic HCV infection. (Source: Ghany MG, Strader DB, Thomas DL, Seeff LB, American Association for the Study of Liver D. Diagnosis, management, and treatment of hepatitis C: an update. [Practice Guideline.] Hepatology 2009;49(4):1335–74.)

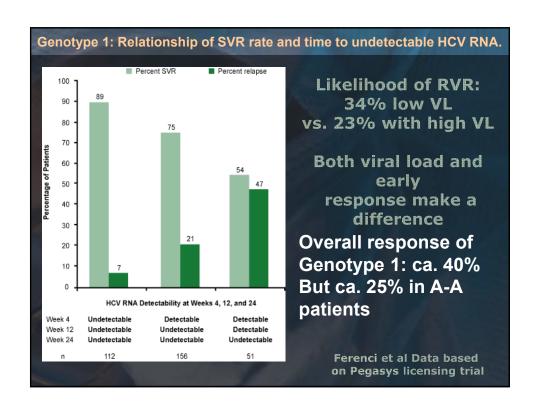

Summary of new CDC Recs

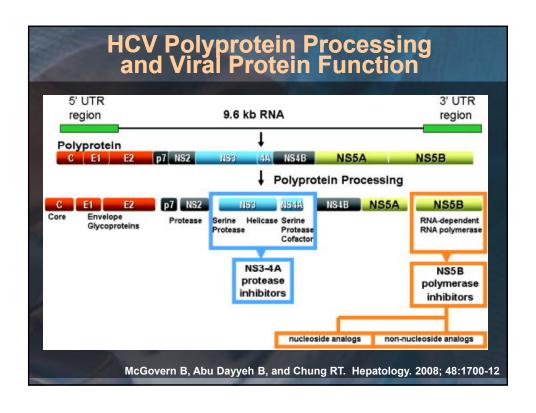

- Current estimates are ca. 4 million Americans with HCV
- Between 45 and 85% of HCV infected are unaware of it
- Risk-based strategies have failed
- Baby boomers (1945-1965) represent 27% of the population but 75% of those infected
- 1990-2015: estimated 4-fold increase in the number of patients diagnosed with HCV in the United States

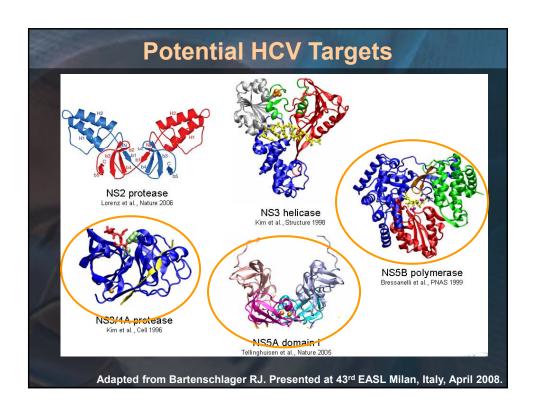

NIH Consensus Development Conference Panel Statement Management of Hepatitis C, 2002.

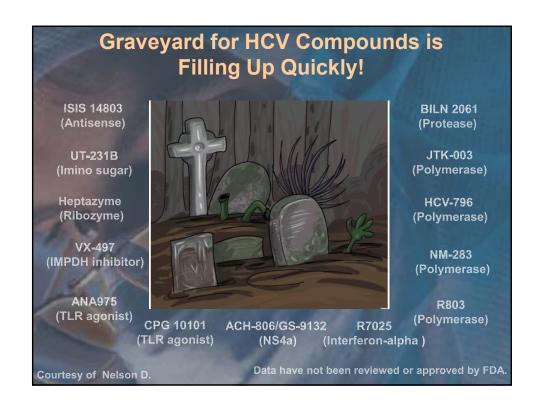


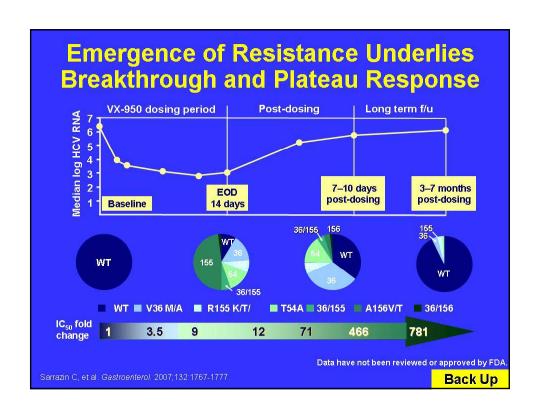









Virological Response Terms


- EVR = minimum 2 log₁₀ decrease in HCV RNA during first 12 wk of therapy
- ETR = undetectable HCV RNA at the completion of therapy
- SVR = persistently undetectable HCV RNA for ≥6 months following completion of therapy
- RVR = negative at wk 4
- eRVR = extended RVR, neg wk 4 + wk 12, 20
- VRVR = negative at wk 1

Major HCV Therapy Trials 2006-2011

MERCK: Boceprevir, Victrelis®

SPRINT-1: Naïve, Phase 2: Boceprevir: dose finding

SPRINT-2: Naïve, Phase 3: Boceprevir: RGT/Blacks/Non-Black RESPOND-2: Experienced, Phase 3: Boceprevir, length Rx

experienced

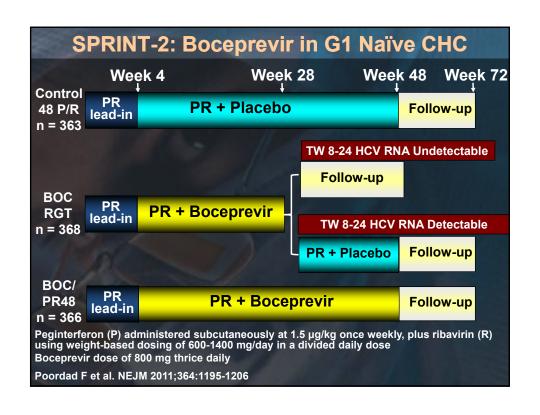
VERTEX: Telaprevir, Incivek®

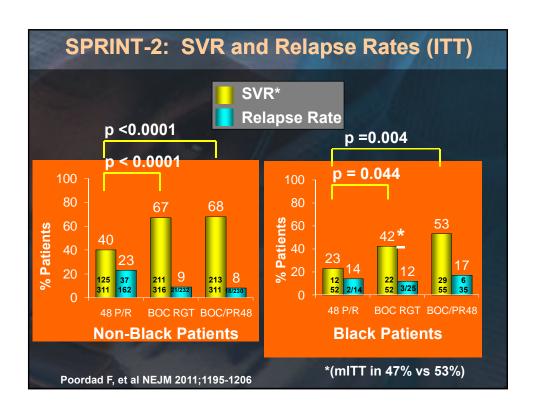
PROVE-1: Naïve, Phase 2: Telaprevir, dose/duration PROVE-2: Naïve, Phase 2: Telaprevir, leave off RBV?

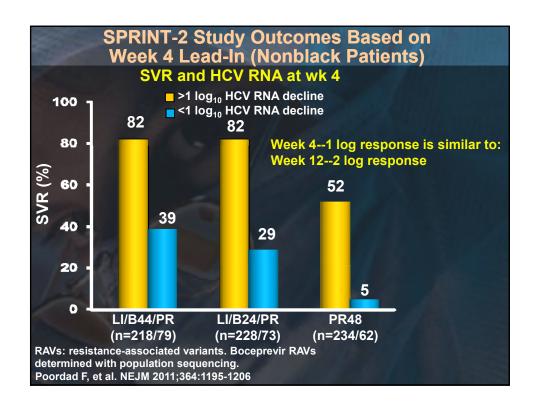
ADVANCE: Naïve 8 vs 12 wk, Phase 3: Telaprevir, shorten

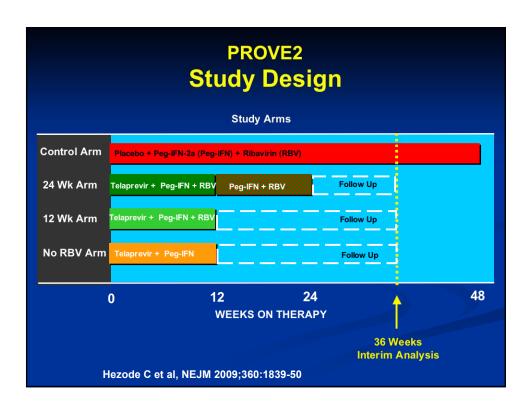
Rx to 8 wk

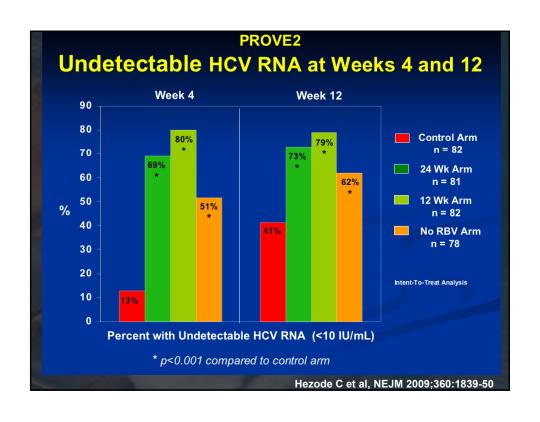
ILLUMINATE: Naïve RGT, Phase 3: Telaprevir: RGT: 24 vs. 48

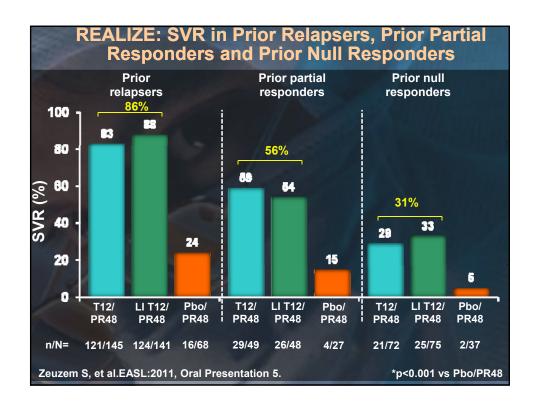

REALIZE: Experienced, Phase 3: Telaprevir: Lead-in

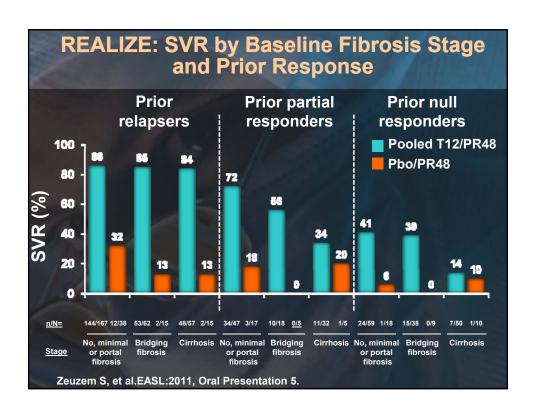

Add on to SOC: Phase 2 Trials of HCV NS3-4A protease inhibitors in HCV-1


Response	PROVE1 (24 wks)	PROVE2 (24 wks)	SPRINT-1 (28 wks) (no leadin/leadin)	SPRINT-1 (48 wks) (no leadin/leadin)	SOC Peg/RBV (48 wks)
RVR	81%	69%	39%	37%	8-15%
SVR	61%	68%	54/56%	67/75%	38-48%

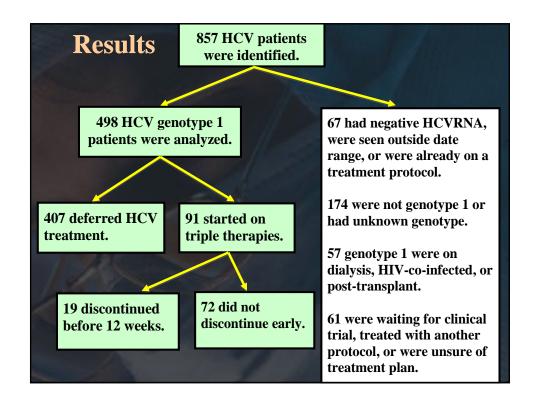

- PROVE1: TPV + Peg-2a / RBV × 12 wks then Peg/ RBV × 12 wks if RVR (24W)
- PROVE2: TPV + Peg-2a / RBV × 12 wks then Peg RBV × 12 wks (24W)
- SPRINT-1: Boceprevir + Peg-2b + RBV for 24/28 weeks or 44/48 weeks with or without a 4-wk lead in period of PEG-2b + RBV


McHutchison J, et al. NEJM 2009;360:1827-38 Hezode C et al, NEJM 2009;360:1839-50 Kwo P, et al. Lancet 2010; 376:705-16

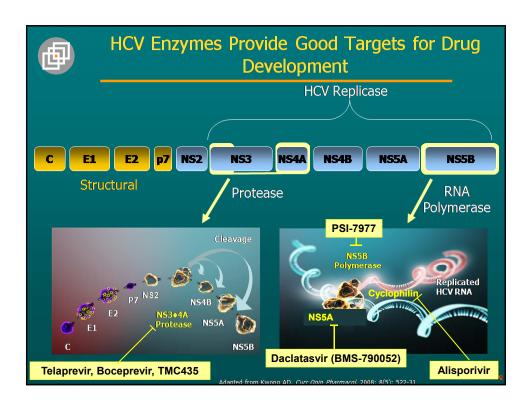




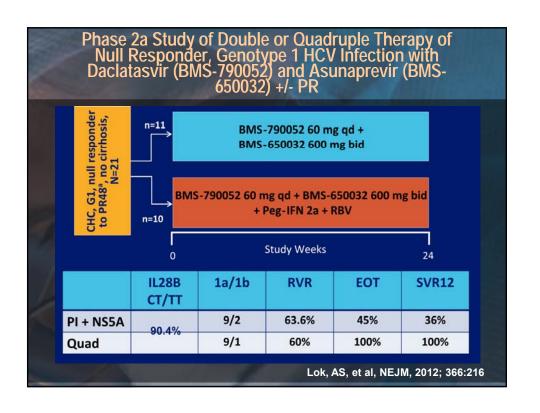
% of Patients with	T12PR N=363	T8PR N=364	PR (control) N=361
Any Adverse Event*	99	99	98
Fatigue	57	58	57
Pruritus	50	45	36
Headache	41	43	39
Nausea	43	40	31
Rash	37	35	24
Anemia	37	39	19
Insomnia	32	32	31
Diarrhea	28	32	22
Influenza-like illness	28	29	28
Pyrexia	26	30	24

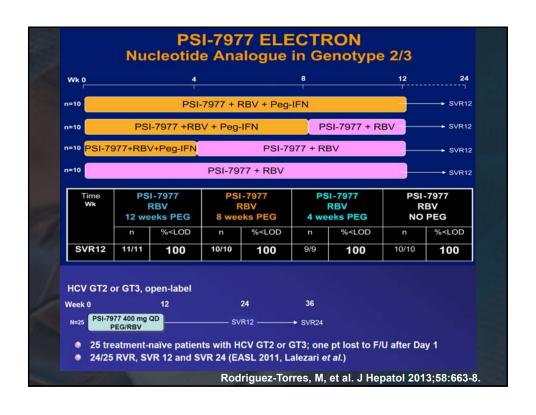


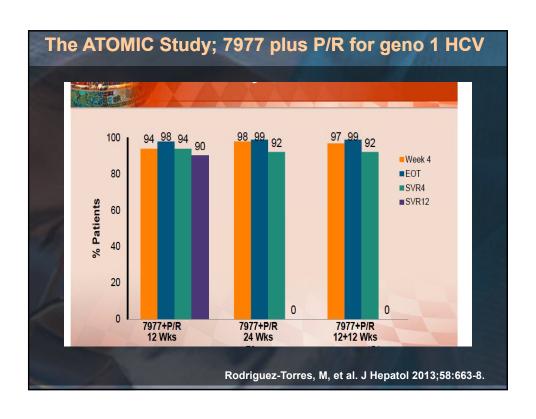
Conclusions: HCV Therapy as of 2011

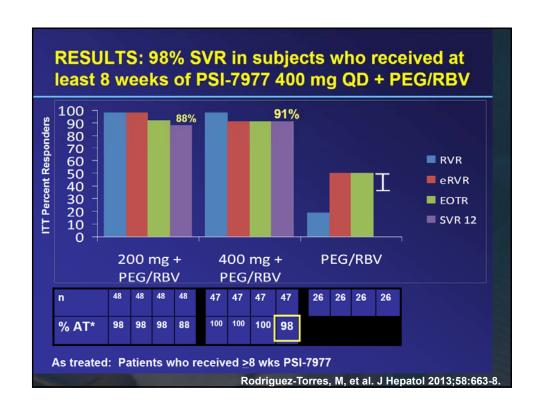

Durability of therapy

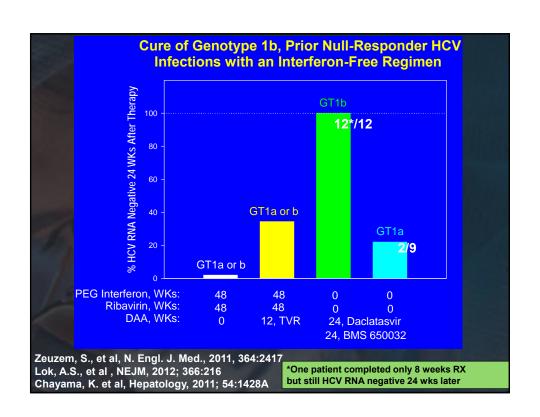
- SVR is a cure
- Tailor therapy to early viral response: RGT is effective Protease inhibitors
- High rates of RVR in naive patients, ca. 65%
 - Can shorten Rx to 24-28 weeks Rx for RVR's
 - Treatment-limiting adverse effects include rash, diarrhea
- More side effects, limiting responses but few relapses
- Virological failure occurs with mutations, ? significance
- Cirrhosis, high VL, genotype less predictive; 1b > 1a
- Prior IFN/RBV response determines 3-drug response
- Need IFN and RBV so far!!
- Watch for earlier and more severe anemia!




Discussion


- Triple therapy initiation rate was only 18%.
- Reasons to defer triple therapy included medical and psych contraindications, too early or too late
- Probably more HCV patients in academic practices have advanced fibrosis and/or are prior treatment non-responders. "Hard-totreat"
- Triple therapy discontinuation rate (20.8%) higher than the 7-9% reported in clinical trials




Direct Acting Antiviral	Target	SVR rates (DAA /PR vs. PR)	Unique Features
Daclatasvir 10 mg, 48 wk, N=12	NS5A Replication Complex	92% vs. 25%	First in class Once daily dosing No new side effects
TMC435, 150 mg X 24 wk, N=79	NS3/4A protease	86% vs. 65%	Macrocyclic Higher resistance barrier Once daily dosing
PSI-7977 400 mg, 24 wk, N=47	NS5B polymerase	91% vs. < 50%	Pangenotypic Once daily dosing No resistance observed

Summary: Current State of Play 2013

- Triple therapy is superior to Peg/RBV
- But is not successful in many patients with established cirrhosis
- Interferon/RBV still needed so far
- New agents hold great promise/not here yet
- We will be able to treat all sorts of HCV patients within the next 3 years: HIV, cirrhosis, post-transplantation

Unanswered Questions

- 2nd generation agents are not yet here but seem amazing
- Will they work as well in the 'hard to treat?'
- How will we treat HIV/HCV? Or transplant patients?
- When will we have an approved IFNfree regimen?
- What will be the cost of a 'sure cure?'

Public Health Concerns

- Medications very expensive, currently up to \$70,000 for a course of treatment
- No vaccination available
- Large number of unrecognized cases, probably around 50%
- Need to develop strategies to identify new cases
- Increasing numbers with end-stage liver disease being recognized: HCC
- Large burden on health care system

Taking the CDC Recs to Heart

- CDC recs represent a watershed
- How to implement them?
- How about employee screening for HCV?
- HIPAA considerations?
- The drugs will soon be available, fall 2013?
- Conquering Hep C is in sight!!

