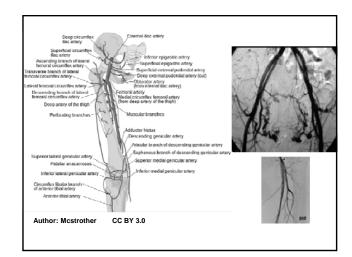
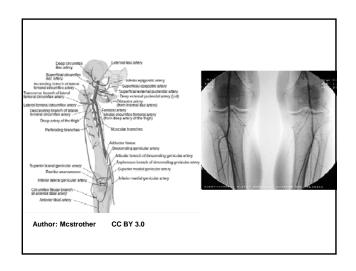
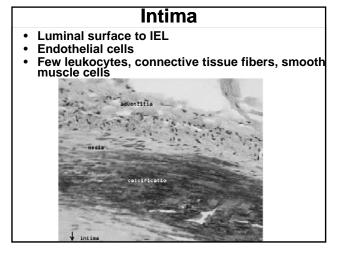
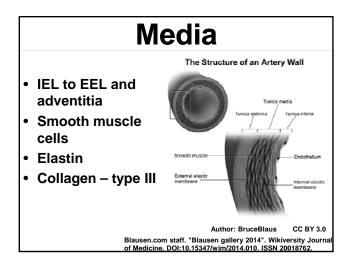
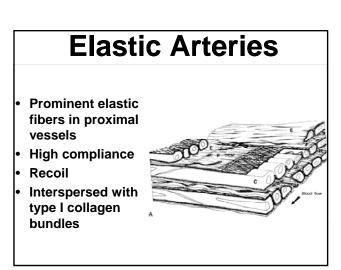
Peripheral Artery Disease

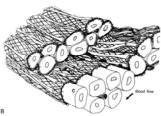

Michael R. Go, MD
Assistant Professor
Division of Vascular Diseases and Surgery
Department of Surgery
The Ohio State University Wexner Medical Center


Disclosures

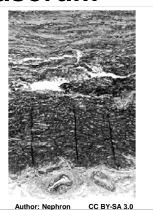

None


Objectives


- Anatomy
- Pathophysiology
- Demographics
- Diagnosis
- Treatment



Muscular Arteries


- Smaller distal vessels
- Less collagen and elastin, more smooth muscle cells
- Constrict and dilate B more effectively

Fibrocellular connective tissue Vasa vasorum Some collagen and elastin Normally does not contribute to tensile strength In atherosclerosis, a diseased media relies on adventitia for tensile strength Artery Wall Tunica erterns Artery Wall Tunica erterns Artery Wall Tunica erterns Artery Wall Tunica erterns Tunica erterns

Vasa Vasorum

- Diffusion supports 0.5 mm or 30 musculoelastic bundles
- Vasa vasorum supply the rest

Atherosclerosis

- Most common cause of peripheral arterial occlusive disease
- Preferentially involves the internal carotid, infrarenal aorta, and superficial femoral arteries
- Typically occurs at bifurcations

Pathology

- Intimal thickening
- Fatty streaks
- Fibrous plaques
- Plaque complication

Intimal Thickening

- · Increased wall tensile stress
- Increased wall thickness
- Occurs at bifurcations and areas of redistribution of wall stress in fetuses
- No lipid accumulation
- Occurs in same places as plaque, but not necessarily a precursor

Fatty Streaks

- Intimal accumulation of foam cells
- Affect all ages
- Do not compromise lumen
- Abnormal overlying endothelial cells
- Occurs throughout vascular tree
- Not necessarily a precursor of plaque

Fibrous Plaques

- Earliest definitive atherosclerotic lesion
- Appear by second decade
- Subendothelial smooth muscle
- Fibrous cap of connective tissue
- Intact but fragile endothelium
- Attenuated media

Plaque Complications

- Necrotic core of lipid, macrophages, and smooth muscle cells
- Calcification
- Endothelial disruption
- Ulceration
- Hemorrhage
- Embolism

Pathophysiology

- Atherosclerosis may cause symptoms via:
 - stenosis or occlusion
 - thromboembolism
 - cardiogenic
 - arterioarterial
 - thrombosis of complicated plaque
- Inadequate tissue perfusion

Collateralization

- Collateralization refers to the formation of multiple arterial pathways that develop around a diseased axial vessel
- Resistance is always higher through collaterals than through axial vessels
- Axial vessel occlusions cause more severe symptoms if collaterals are undeveloped, which is why acute axial vessel occlusions may cause more profound ischemia

Important Collateral Pathways

- External carotid
- Internal iliac, lumbar, internal mammary, and epigastric
- Profunda femoris
- Geniculate

Risk Factors

- Tobbaco use
- Diabetes
- Hyperlipidemia
- Genetics
- Hypertension

Infrainguinal Arterial Occlusive Disease

- Affects 17% of people over 70
- Asymptomatic
- Claudication
- · Critical limb ischemia

Rutherford: Vascular Surgery, 6th ed.

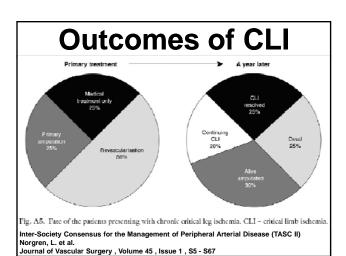
Claudication

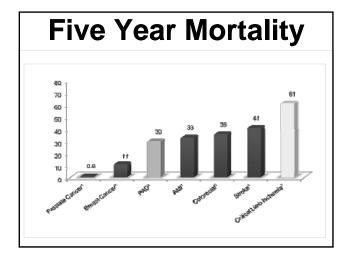
- Pain in the large muscle groups distal to an arterial lesion after exercise
- · Cramping, heaviness, fatigue
- Occurs consistently after a certain distance of walking
- Reliably abates when patient stops
- The patient is asymptomatic at rest because there are adequate collaterals for perfusion without increased metabolic demand

Bloor K. Natural history of arteriosclerosis of the lower extremities. *Ann R Coll Surg Engl* 1961; 28: 36-51

- Affects 5% of the population over 50
- 75% of claudicants will remain stable
- 25% will deteriorate
 - 7 9% in first year
 - 2 3% per year after first year
- 5% will progress to critical limb ischemia
- 2% will progress to major amputation

Claudication • 90% have concomitant CAD • 5 year overall amputation 5% • 5 year incidence of symptomatic coronary artery disease 23% • 5 year incidence of stroke 13% • 5 year mortality 20% • 10 year mortality 50% • 15 year mortality 70%


Critical Limb Ischemia


- · Ischemic rest pain
 - intense pain across distal foot and arch
 - burning, stabbing, constant
 - worsened with elevation
 - dependent rubor
- Ulceration
- Gangrene
 - dry
 - wet

Critical Limb Ischemia

- 500 1000 / 1 million new cases annually
- 1 3% of PAD population
- 150,000 amputations per year attributable to CLI

Diabetic Foot Problems

 Diabetic foot ulcers and amputations cost US health care providers over 10 billion dollars per year

Diabetic Foot Problems

- 24 million diabetic patients in the US
- 90% are type 2
- 15% will require hospitalization for some complication
- 7.8% will account for > 60% of all non-traumatic foot amputations

Diabetic Foot Problems

- Lifetime risk of ulcers or gangrene is
- > 15% of patients with ulcers will end up with an amputation
- Every 30 seconds a leg is amputated somewhere in the world as a consequence of diabetes

Diabetic Foot Problems

- 85% of amputations in diabetics are preceded by foot ulcerations
- Theoretically, improvement in foot ulcer therapy will decrease limb loss...
- However, no industrialized country has seen a decrease in diabetic limb loss in the modern era of medicine

Diabetic Foot Problems

- Highest incidence in ethnic minority groups
 - Native Americans
 - Hispanics
 - African Americans
- A problem requiring intensive follow up and management is compounded by difficult access to care

Diabetic Foot Problems

- Neuropathy
- Deformity
- Trauma
- Ischemia
- Infection

Neuropathy

- · Sensory nerves affected first
- Small diameter pain and temperature fibers are initially damaged
- Predisposes to pressure related trauma and minor skin Injuries

Neuropathy

- Motor neuropathy is late
- Affects both long fibers innervating both intrinsic muscles of the foot and leg muscles

Neuropathy

- · Atrophy of intrinsic foot muscles
- Preserved flexor muscle strength results in "clawed position"
- Abnormal pressure points emerge at tips of toes
- · Metatarsal heads relax

Neuropathy

- Calluses form which later may ulcerate
- Small muscles of the foot atrophy

Autonomic Neuropathy

- Dry skin
- Loss of sweat and oil gland function
- Dry skin predisposes to fissures
- Calluses and fissures breakdown
- · Portals of entry for bacteria

Ischemia

- Neuropathy causes shunting of blood through AV connections in the microcirculation
- Results in decreased tissue perfusion even with normal axial vessels
- Cutaneous oxygen saturation is decreased
- Compounded with neuropathy, ulceration results

Ischemia

- Diabetes causes structural and functional changes in the capillary bed
- Thickened basement membrane
- Impaired migration of leukocytes
- Impaired vasodilation response to injury
- Blunted inflammatory response to injury

Ischemia and Infection

 Because of this blunted inflammatory response, diabetic patients lack a crucial component of the body's first line defense against pathogens and thus are more susceptible to foot infection

Diabetes and PAD

- Diabetic foot problems, particularly in combination with PAD, are serious
- Even in the absence of axial vessel disease, they can be difficult to heal

Differential

- · Neurogenic claudication
 - spinal stenosis or nerve root compression
 - history of back pain
 - burning or shooting pain radiating down posterior leg
 - numbness or paresthesias
- Neuropathy
- Arthritis
- · Neuropathic ulceration

History

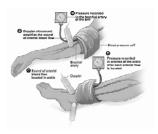
- · Coronary artery disease
 - MI
 - CHF
 - arrhythmia
 - recent cardiac evaluation
- DM
- Smoking
- Hypertension
- Hypercholesterolemia
- Family history of atherosclerotic diseaseCerebrovascular disease
- - stroke
 - TIA
 - amaurosis

Physical Exam

- · Complete heart and lung exam
- Neurologic exam
 - carotid bruits
 - superficial temporal pulses
 - cranial nerves
 - motor
 - sensory

Vascular Exam

- Complete bilateral pulse exam
 - Doppler
 - monophasic
 - multiphasic
 - 0, 1+, 2+, 3+, widened pulses
 - Bruits and thrills


Vascular Exam

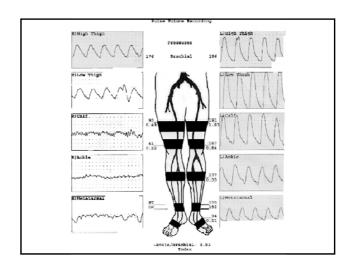
- Dependent rubor
- Shiny skin
- Loss of hair
- Diminished nail growth
- Ulceration and gangrene

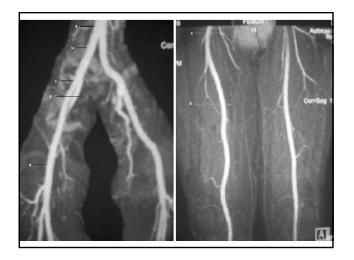
Vascular Lab Testing

- Segmental pressures and ABI
- Can be affected by vascular calcification or edema

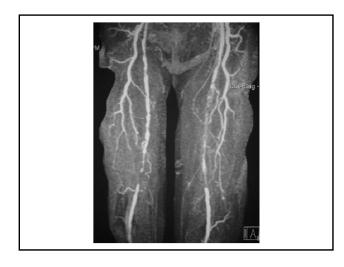
ABI

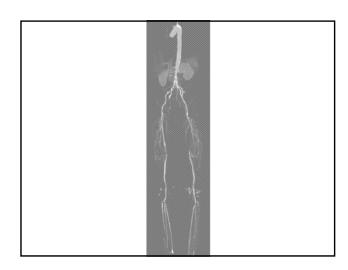
- Claudication
- Rest pain 0.3
- Tissue loss
- 0.2


0.6


Exercise Testing

- Treadmill or calf raises decrease peripheral resistance
- · Flow increases based on Ohm's law
- If there is a proximal stenosis, flow increase is limited and pressure will drop


Vascular Lab Testing


- Pulse volume recordings
 - normal
 - blunted
- Doppler waveforms
 - multiphasic
 - monophasic
- Digital pressures
- Not limited by vessel calcification
- Complements pressure testing

Angiography

- Diagnostic
- Therapeutic
- Complications
 - nephrotoxicity
 - contrast allergy
 - arterial injury
 - embolization
 - hematoma
 - pseudoaneurysm

Treatment of Claudication

- Risk factor modification
 - smoking cessation
 - hypertension
 - hyperlipidemia
 - diabetes
- Cilostazol
 - rheologic agent
 - increases walking distance
 - contraindicated in CHF
- Supervised exercise program
 - 30 minutes of cardiovascular exercise daily
 - 5 days per week

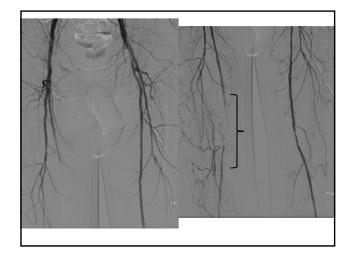
Treatment of Claudication

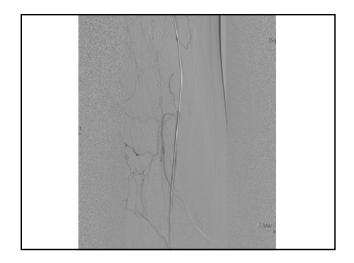
- Procedural intervention for claudication is reserved for patients with lifestyle-limiting claudication and failure of medical therapy
- Often, this is related to single level, proximal disease
 - aortoiliac
 - femoral
 - ABI 0.6

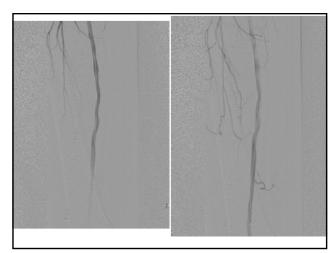
Treatment of Rest Pain or Tissue Loss

- · Risk factor modification
- Restoration of in-line vascular flow
- Management of the wound
- Often, this is related to multi level or distal disease
 - popliteal
 - tibial
 - ABI 0.3

Peripheral Artery Disease


Mounir J. Haurani, MD
Assistant Professor - Clinical
Division of Vascular Diseases and Surgery
Department of Surgery
The Ohio State University Wexner Medical Center


Open vs. Surgery; Decision Making


- Anatomy
- CLI vs. Claudication
- Overall health of the patient

Percutaneous / Endovascular

- Balloon Angioplasty
- Stents
- Debulking (atherectomy)

Percutaneous Treatment Results Are Better...

- Proximal vessels (aorta > iliacs > SFA > tibials)
- Short lesions
- Focal lesions
- Stenosis > occlusions

Percutaneous Treatments Are Worse...


- Distal or smaller vessels
- Long lesions
- Diffuse lesions
- Occlusions
- At joints or bifurcations
 - common femoral
 - profunda
 - popliteal

Percutaneous Treatments

- Local anesthesia
- Fewer cardiac and pulmonary complications
- Outpatient procedure

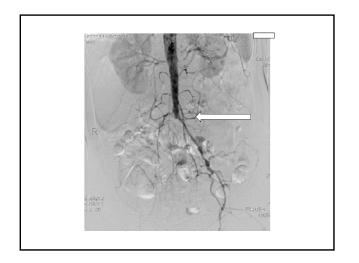
Percutaneous Treatments

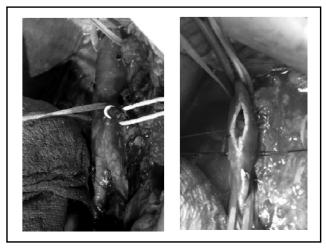
- Radiation
- Nephrotoxicity
- Arterial injury
- Embolization
- Hematoma
- Pseudoaneurysm
- Rarely as durable as bypass or open repair

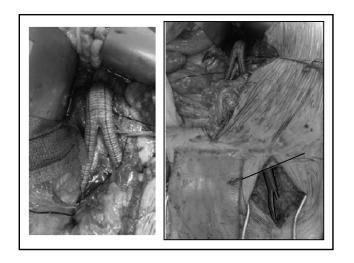
Surgery

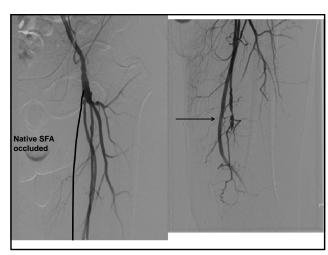
- Procedural intervention for claudication is reserved for patients with lifestylelimiting claudication and failure of medical therapy
- Rest pain
- Tissue loss

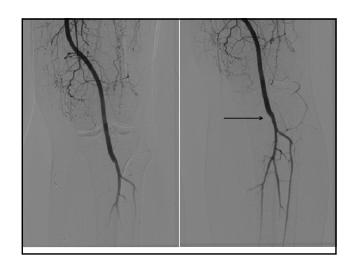
Surgical Options


- Endarterectomy
- Bypass
 - normal inflow
 - normal outflow


Levels of Disease Determines Options


- Aortoiliac
 - aortoiliac endarterectomy
 - aortofemoral bypass
 - axillary femoral bypass
- Femoropopliteal
 - femoral endarterectomy
 - femoropopliteal bypass
- Tibial
 - femorotibial bypass
 - popliteal tibial or pedal bypass


Contraindications to Surgery


- Prohibitive medical comorbidities
 - coronary
 - pulmonary
- Unreconstructible vessels
- Nonambulatory status (consider primary amputation)
- Extensive tissue loss (consider primary amputation)

Bypass Conduit

- Greater saphenous vein
- Other autogenous vein
 - lesser saphenous
 - cephalic
 - basilic
- Prosthetic (polyester or Polytetrafluoroethylene)

Primary Amputation

Amputation

- Nonambulatory patients with CLI
- Patients with extensive tissue loss
- Unreconstructible patients
 - foot sepsis
 - intractable pain

Level Selection

- Goals of amputation
 - Eliminate infected, necrotic, and painful tissue
 - Wound that heals successfully
 - Residual limb that can accommodate prosthesis

Level Selection; Energy Expenditure

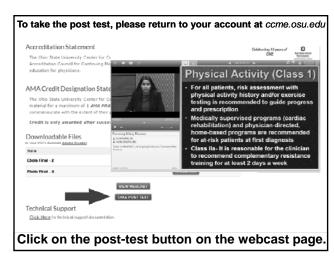
- Unilateral below-knee amputees
 - 10% to 40% increase
 - 50-100% Prosthetic use
- Above-knee amputees
 - 50% to 70% increase
 - 10-30% prosthetic use
- True ambulation rates decrease significantly at 5 years

Level Selection

- · Physical findings
 - First step
 - Extent of gangrene and infection dictates
 - Dependent rubor = gangrene
 - Palpable pulse immediately proximal = nearly100% healing rate
- Clinical judgment
 - 80-90% accurate

Amputation


- Digit
- Transmetatarsal
- Below knee
- Above knee



Amputation

- Overall mortality
 - BKA 30 day: 6% 3 year: 40%
 - AKA 30 day: 13% 3 year: 60%
- 50% of patients will need contralateral amputation in 3 years

