Evaluation and Treatment of Idiopathic Pulmonary Fibrosis

Nitin Bhatt, MD
Associate Professor of Internal Medicine
Division of Pulmonary, Allergy, Critical Care,
and Sleep Medicine
Department of Internal Medicine
The Ohio State University Wexner Medical Center

Case

- 57 yo WM
- SOB over the past 6 months
- Throat clearing, dry cough for 3 years
- DOE at work, difficulty climbing steps
- Not feeling better after cath/PTCA 2 months prior
- Abnormal CXR showing fibrosis
- PMHx: CAD, GERD
- Meds: ASA, Plavix, metoprolol, PPI
- PSHx: 15PY tob, quit 20 years ago

Case

- Exam
- Bibasilar dry crackles Normal spirometry
- Mild clubbing

- PFTs:
- Lung volumes restriction TLC 68% predicted
- DLCO 55% predicted
- 6 minute walk: 2100 feet, 97% at rest, 84% with walk on room air
- Labs:
- ANA (+) 1:80
- RF (+), ANCA (-), ENA (-)
- **CXR** shows interstitial lung disease

Interstitial Lung Diseases

- Groups of disorders characterized by varying degrees of inflammation and fibrosis
- Response to a known tissue injury or part of unknown process
- Dysregulated repair process
- Effect the interstitial space
 - Between the alveolar epithelial cell membrane-pulmonary capillary endothelial cell membrane
 - Site of initial injury, early effects on gas transfer

Interstitial Lung Diseases

- Can also effect areas outside the alveoli, such as the bronchioles, larger airways and pulmonary vasculature
 - Diffuse parenchymal lung diseases

Interstitial Lung Disease

- Over 150 etiologies
- Symptoms nonspecific
 - SOB/DOE and cough
- Diagnosis requires combination of:
 - Clinical presentation
 - Radiology (high resolution chest CT)
 - Pathology
- Prognosis and treatment dependent on diagnosis

Interstitial Lung Disease

- Desquamative Interstitial Pneumonitis •
- Lymphocytic Interstitial Pneumonitis
- Eosinophilic pneumonia
- Alveolar Proteinosis
- Amyloidosis
- Lymphangitic Carcinomatosis
- Radiation Pneumonitis
- Langerhan's Cell Granulomatosis
- Lymphangioleiomyomat osis
- Tuberous Sclerosis
- Neurofibromatosis
- Hypersensitivity Pneumonitis
- Sarcoidosis
- Berylliosis
- Ankylosing Spondylitis
- Rheumatoid Arthritis
- Silicosis
- Asbestosis
- Lymphoma

- Hemosiderosis
- Wegener's Granulomatosis •
- **Drug-Induced Fibrosis**
- Systemic Sclerosis
- Systemic Lupus Erythematosus
- Sjogren's Syndrome
- Mycobacterial Infection Histoplasmosis
- Aspiration
- Lipoid Pneumonia
- Polymyositis
 Missel Commonting Time
- Mixed Connective Tissue Disease
- Microlithiasis
- Churg-Strauss Syndrome
- Pneumocystis carinii
- Oxygen Toxicity
- Cryptogenic Organizing Pneumonia
- Non-Specific Interstitial Pneumonitis
- Usual Interstitial Pneumonitis
- Bleomycin

- lqG4 disease
- Hard metal disease
- Crohn's disease
- Ulcerative collitis
- Idiopathic inflammatory myopathy
- Familial IPF
- Hermansky-Pudlak syndrome
- Gaucher's disease
- Goodpasture's syndrome
- Nitrofurantoin
- Methotrexate
- Amiodarone
- Talc granulomatosis
- Siderosis
- Tannosis
- Coal worker's pneumoconiosis
- Sulfasalazine
- Minocycline

Interstitial Lung Disease

- Diffuse Parenchymal Lung Diseases
 - DPLD of known cause
 - Drugs induced
 - Radiation therapy
 - Collagen vascular diseases
 - Systemic diseases
 - Occupational exposures
 - Granulomatous diseases
 - Hypersensitivity pneumonitis
 - Sarcoidosis
 - Other DPLD: cystic, congenital lung diseases
 - Idiopathic Interstitial Pneumonias

Interstitial Lung Disease

Idiopathic Interstitial Pneumonias

- Idiopathic pulmonary fibrosis
- Idiopathic nonspecific interstitial pneumonia
- Respiratory bronchiolitis–ILD
- Desquamative interstitial pneumonia
- Cryptogenic organizing pneumonia
- Acute interstitial pneumonia
- Rare idiopathic interstitial pneumonia
- Idiopathic lymphoid interstitial pneumonia
- Idiopathic pleuroparenchymal fibroelastosis
- Unclassifiable idiopathic interstitial pneumonias

Diagnostic Approach to ILD

- Clinical
 - Smoking history
 - Medications, other drug history and treatments
 - Hobbies, travel
 - Exposures
 - » Occupational
 - »Industrial, agricultural
 - » Environmental
 - » Pets, bird feathers/down bedding, hot tubs, contaminated water sources
 - Family history
 - Comorbid diseases

Diagnostic Approach to ILD

- Physical Examination
 - Crackles, dry or velcro
 - Clubbing
 - Signs of right heart strain/failure
 - Signs of systemic disease (vasculitis, connective tissue diseases)

»Potential biopsy sites (rashes)

Diagnostic Approach to ILD

- Pulmonary Function Testing
 - Interstitial inflammation and scarring results in restrictive defect
 - Impaired gas exchange with a reduced diffusing capacity
 - Measures of O2 saturation with exercise
 »6 Minute walk
 - Not diagnostic but characterizes severity
 - Obstructive physiology not typical features of ILD
 - » May be present with coexisting COPD

Diagnostic Approach to ILD

- Laboratory Testing
 - No specific laboratory tests or biomarkers
 - Routine laboratory testing with chemistries, CBC with differential
 - Evaluation for autoimmune diseases
 - » ANA/ENA
 - » Rheumatoid factor/CCP
 - »CK, aldolase
 - »If signs /symptoms of vasculitis, consider ANCA

Diagnostic Approach to ILD

- Chest imaging
 - CXR findings nonspecific
 - High resolution chest CT is central in the diagnosis and evaluation of ILDs
 - » Patterns suggestive of certain disorders
 - » Replaced biopsy in some cases
- Lung biopsy

Case

- Diagnosed with interstitial lung disease and hypoxemia
- Referred to pulmonary
- Chest CT showed interstitial lung disease
- Lung biopsy with diagnosis of Usual Interstitial Pneumonitis (UIP)
- Idiopathic Pulmonary Fibrosis

Idiopathic Pulmonary Fibrosis

- Most common ILD of unknown etiology
- Mainly affects over age of 50, most over 60
- Incidence is estimated at 7.4-17 cases per 100,000 per year
- Prevalence of IPF is estimated at 13-60/100,000
- More men than women (1.5:1 ratio)
- 5-15% have a familial form
 - Present at a younger age
- Possible risk factors for developing IPF include cigarette smoking, occupational/environmental exposures (dusts)

What causes IPF?

#1 Genetic Predisposition

- Surfactant proteins C
- Surfactant protein A2
- Telomerase genes
 - TERT, TERC
 - 18% familial cases
- Mucin (MUC) 5B
 - 1/3rd sporadic cases

#2 Epithelial Injury

- Inhaled exposures
- Dusty environment (organic and inorganic materials)
- Tobacco smoke
- Viruses
- Acid reflux/aspiration

Familial Pulmonary Fibrosis

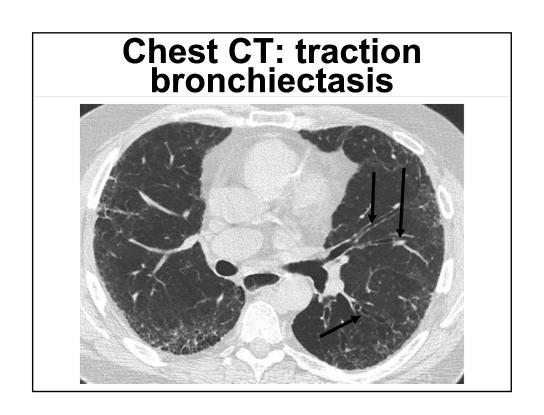
- Patients look just like IPF
- Typically ages 50-70
- Definition: first degree relative with IPF
- Probably autosomal dominant with variable penetrance
- Accounts for 5-15% of patients with IPF
- Genetic cause found in about 10% of familial pulmonary fibrosis
- · Treatment is the same as IPF

Idiopathic Pulmonary Fibrosis

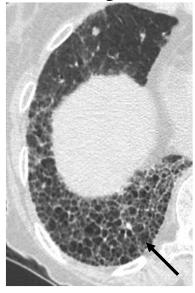
- History/Exam
 - Gradual onset and progressive dyspnea
 - Nonproductive cough
 - Bibasilar inspiratory crackles (Velcro crackles)
 - Clubbing also common
 - Later in the clinical course, signs of right heart failure, peripheral edema, cyanosis

Idiopathic Pulmonary Fibrosis

- PFTs show restriction, low diffusing capacity and desaturation with exertion
- +ANA, +RF unclear clinical significance
- Diagnosis confirmed by imaging, lung biopsy


Chest CT in IPF

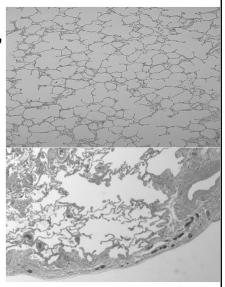
- Subpleural basal predominance
- Reticular abnormality
- Honeycombing
- Traction bronchiectasis
- Absence of features listed as inconsistent with UIP pattern
 - Upper lung or mid lung predominance
 - Ground-glass abnormality, nodules, discrete cysts, mosaic attenuation/air trapping, consolidation
- Presence of these findings on HRCT in a patient without evidence of an alternative diagnosis
- Sufficient for a confident diagnosis of IPF
- Accuracy of 79-90%

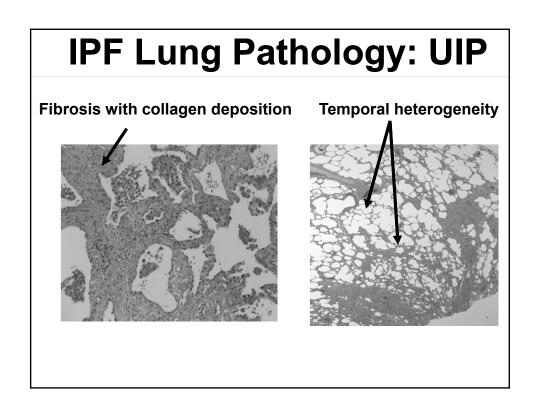

Normal Chest CT

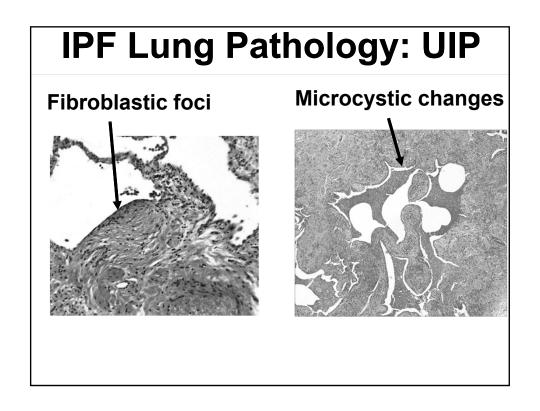
Chest CT: subpleural reticular infiltrates

Chest CT: basilar honeycomb infiltrates

Role of Lung Biopsy


- In about 1/3rd of patients, require tissue to confirm diagnosis
 - Atypical findings on CT scan or clinical history
 - Early in disease process


Role of Lung Biopsy


- Bronchoscopy with transbronchial biopsy
 - Bronchoscopic biopsy does not confirm diagnosis of IPF
 - Useful to evaluate for alternate diagnosis
 - »Granulomatous disorders (sarcoidosis, hypersensitivity pneumonitis)
 - »Malignancy, lymphangitic carcinomatosis
 - »Eosinophilic pneumonia, alveolar proteinosis, Langerhans
 - »Bacterial, viral, and fungal infections
- Thoracoscopic lung biopsy (VATS)

IPF Lung Pathology: UIP

- Usual Interstitial Pneumonitis (UIP pattern)
- Evidence of marked fibrosis, architectural distortion
- Honeycombing in a predominantly subpleural/ paraseptal distribution
- Presence of patchy involvement of lung parenchyma by fibrosis
- Presence of fibroblast foci
- Absence of features against a diagnosis of UIP suggesting an alternate diagnosis

Causes Of Usual Interstitial Pneumonitis

- Idiopathic pulmonary fibrosis (IPF)
- Collagen vascular disease
 - Rheumatoid arthritis
- · Drug toxicity, radiation-induced
- Post-inflammatory pulmonary fibrosis
- Chronic hypersensitivity pneumonitis
 - May see granulomas or other clues of HP
- Occupational exposures
 - Asbestosis
- Familial idiopathic pulmonary fibrosis
- Hermansky–Pudlak syndrome

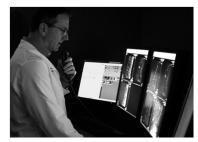
Clinical Course of IPF

- Unpredictable course for an individual patient
- Progressive disease
- Median survival of about 3-5 years
- Cause of death in about ½ related to IPF and respiratory failure
- Others: CAD/MI, infection, strokes
- Limited treatment options in the past
- Lung transplant

Coexisting conditions with IPF

- Pulmonary hypertension
 - In about 1/3 patients and most with advanced disease
 - Associated with worse pulmonary function, hypoxemia
 - Decreased exercise capacity and worse survival
- GERD
 - Common in IPF (65-94%)
 - Potential causal relationship between GERD and IPF through microaspiration of gastric contents
 - Acid-suppression therapy was associated with a slower rate of decline in pulmonary function and longer survival

Coexisting conditions with IPF


- Combined Pulmonary Fibrosis and Emphysema
 - ~8% IPF cases, male, smoking history
 - Disproportionately low DLCO and gas exchange
 - Chest CT upper lobe emphysema, lower lobe fibrosis
 - High incidence of pulmonary hypertension, lung cancer and worse prognosis
- Lung Cancer
 - Increased risk in IPF patients, independent of other risks (smoking)
- OSA, CAD, depression

Acute Exacerbation of IPF

- Acute deterioration with rapid, irreversible clinical decline
 - 1 and 3-year incidence of AE estimated 14% and 21%
 - Mortality rate associated with AE as high as 50% to 80%
 - Survival times 4-15 months in those who "recover"
- Etiology of decline unknown
- Chest imaging shows diffuse ground glass infiltrates
- Lung biopsy shows diffuse alveolar damage (identical to ARDS) superimposed on UIP pattern

Acute Exacerbation of IPF

- Clinical evaluation to rule out an identifiable cause
 - Infection
 - »Consider bronchscopy
 - »Often limited by hypoxemia and risk of respiratory failure
 - Progressive heart failure, ischemic disease
 - »ROMI, Echo, BNP
 - Pulmonary embolism
 - »CTPE study, LE duplex
- No well established therapy

IPF Diagnosis Requires A Multi-Disciplinary Approach

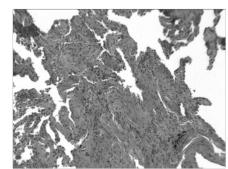
Know your patient
Diseases, exposures,
meds, family
** Pulmonary Fibrosis ≠
Idiopathic Pulmonary Fibrosis

Get to know your radiologist

- Agree on definition of UIP
- Presence or absence of honeycombing
- Presence or absence of ground glass infiltrates
- Geographic location of infiltrates

**Diffuse interstitial infiltrates ≠ IPF

Get to know your thoracic surgeon


- 2 or 3 lobe biopsies
- Avoid the tip of the lingula, middle lobe or lower lobes
- Target ground glass infiltrates or transition zones

**End stage fibrosis ≠ IPF

Get to know your pathologist

- Presence or absence of fibroblastic foci
- Temporal heterogeneity?
- Presence or absences of microcystic changes
- Presence or absence of collagen deposition
- Granulomas?

**End stage fibrosis ≠ IPF

IPF Treatment: What Works?

Jim Allen, MD
Medical Director, University Hospital East
Professor of Internal Medicine
Division of Pulmonary & Critical Care Medicine
The Ohio State University Wexner Medical Center

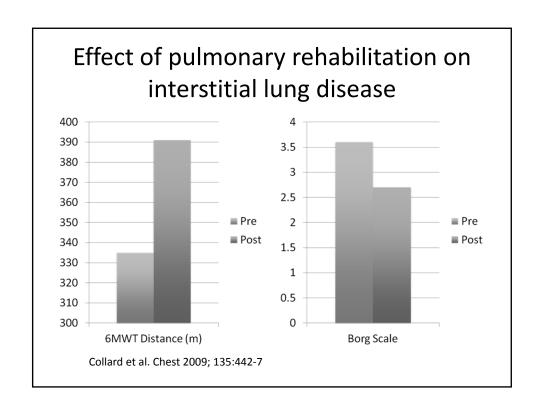
IPF Treatment: What Works?

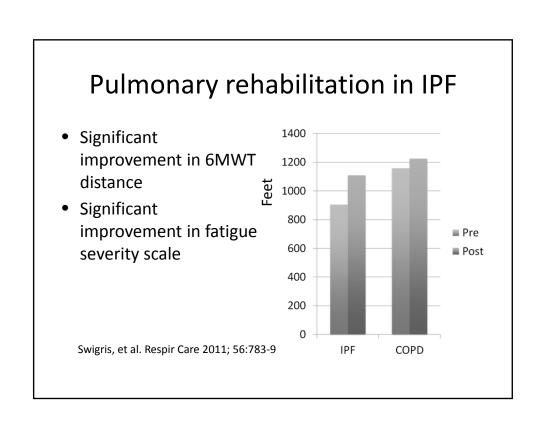
- Oxygen
- Pulmonary rehabilitation
- Lung transplant
- Esophageal reflux treatment
- Pirfenidone
- Nintedanib
- Sildenafil (?)

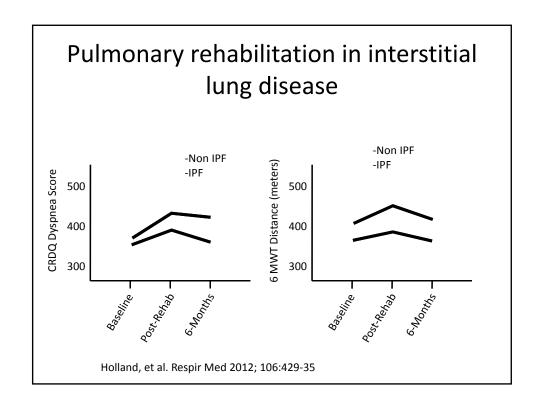
Home oxygen options

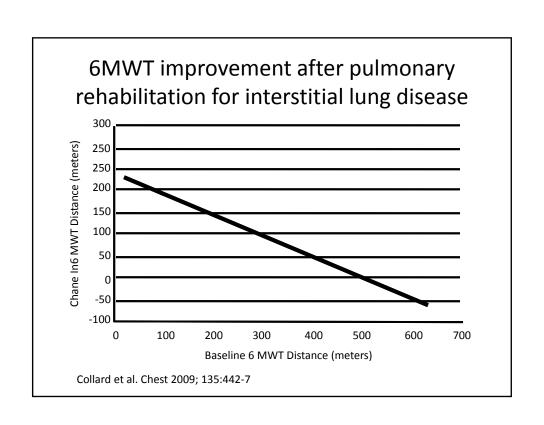
Stationary home units:

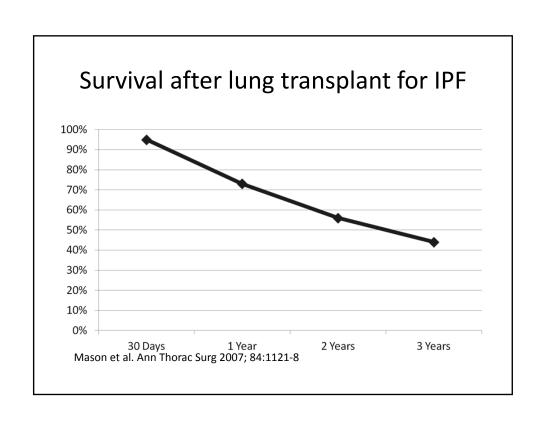
- Oxygen concentrators
 - Standard (1-5 L)
 - High flow (10 L)
- Liquid oxygen reservoir

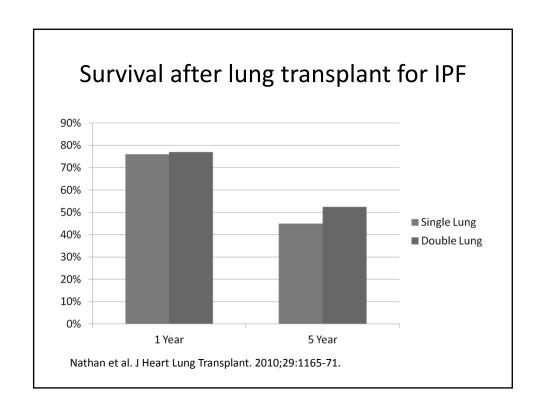

Portable units

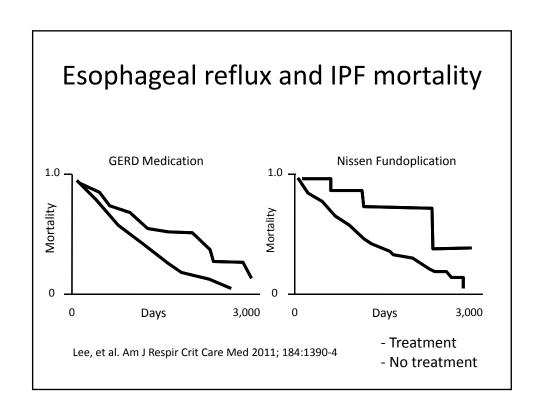

- Compressed gas tanks
 - E cylinders
 - M-6 cylinders
- Portable liquid oxygen tanks
- Portable oxygen concentrators


Pulmonary Rehabilitation


- 8 week programs
- 3 days per week
- 1-2 hours per session
- Focus on:
 - Education
 - Aerobic conditioning
 - Quality of life





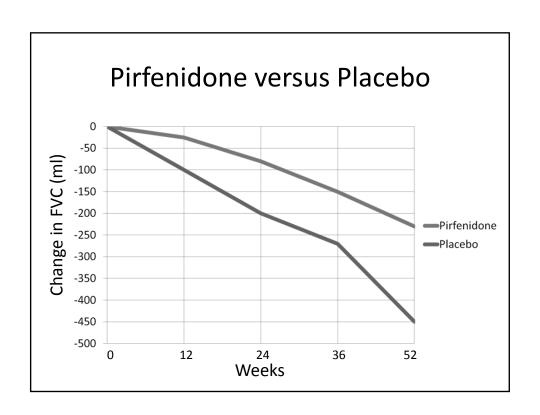


Lung transplant contraindications

- Age > 65 (sort of...)
- BMI > 30
- Smoking in the past 6 months
- Uncured malignancy
- HIV, active hepatitis C/B
- Active infection
- Chest wall deformity
- Non-compliance
- Inadequate psychosocial support

IPF Treatment: What Doesn't Work?

- Corticosteroids
- Bosentan
- Azathioprine
- Ambrisentan
- Cyclophosphamide Interferon-gamma
- Everolimus
- Etanercept
- Anticoagulation
 Imatinib
- N-acetylcysteine
 Ribavarin


New drugs for IPF

- A confident diagnosis of IPF is required!!!
- Nintedanib*
- Pirfenidone*

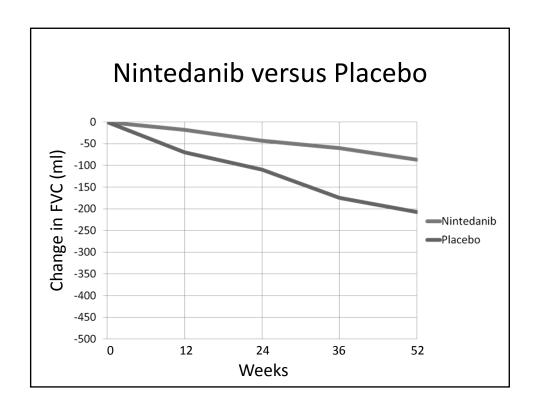
Approved by the FDA October 15, 2014

Pirfenidone (ASCEND trial)

- Reduced loss of lung function (FVC)
- Reduced loss of exercise tolerance
- Improved progression-free survival

Pirfenidone

Dosing:


- Week 1: One capsule three times daily with food
- Week 2: Two capsules three times daily with food
- After week 3: Three capsules three times daily with food
- Dose can be reduced if side effects occur

Laboratory monitoring:

- LFTs monthly x 6 months
- LFTs every 3 months thereafter
- Dose adjustments:
 - LFTS 3-5 times normal: reduce dose to 100 mg every 12 hours
 - LFTs > 5 times normal: stop pirfenidone

Nintedanib (IMPULSIS trials)

- Reduced loss of lung function (FVC)
- Reduced time to first exacerbation (IMPULSIS-2 trial)

Nintedanib

Dosing:

- 150 mg every 12 hours with food
- Dose can be reduced to 100 mg every 12 hours if side effects occur

Laboratory monitoring:

- LFTs monthly x 3 months
- LFTs every 3 months thereafter
- Dose adjustments:
 - LFTS 3-5 times normal: reduce dose to 100 mg every 12 hours
 - LFTs > 5 times normal: stop nintedanib

Side Effects:

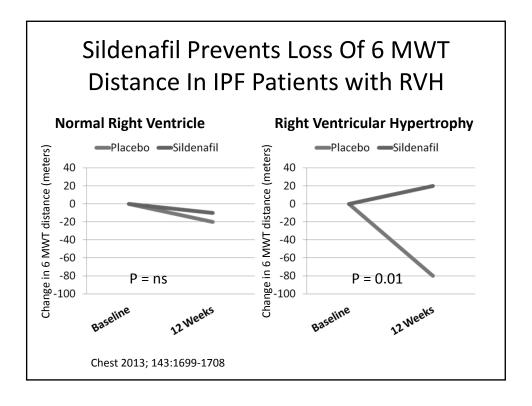
Pirfenidone

Nintedanib

- 36% Diarrhea 62% Nausea 28% • Nausea 24% Rash*
- requiring discontinuation = 14%
- Adverse effect
 Adverse effect requiring discontinuation = 21%

*Photosenstivity

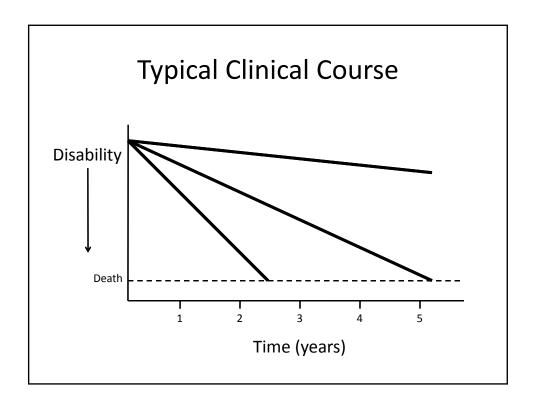
Pirfenidone and Nintedanib: practical considerations


- Both drugs roughly equally effective
- Both drugs very expensive (\$90-100,000/year)
- If patients are intolerant of one, consider changing to the other
- Giving both drugs together is NOT advised

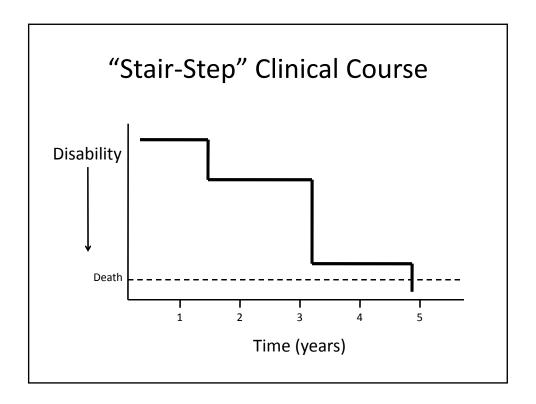
Which patients benefit most from treatment?

- We don't know
- Probably patients with earlier stage disease
 - FVC > 50% and DLCO > 30%
 - Patients with advanced disease are untested
- We do not know about non-IPF conditions:
 - Post-inflammatory pulmonary fibrosis
 - Rheumatoid arthritis-associated ILD
 - Chronic hypersensitivity pneumonitis

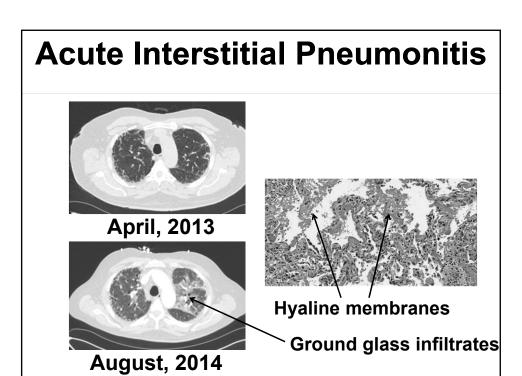
These drugs do not cure, they merely slow down the progression of the disease

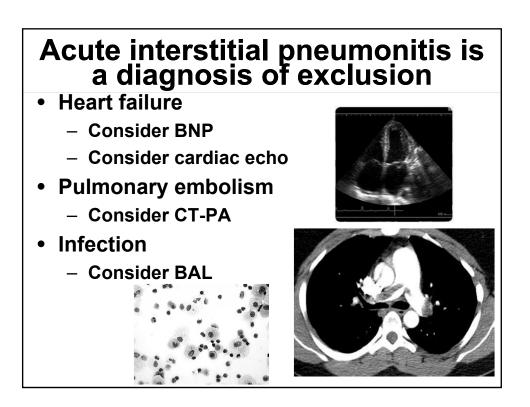


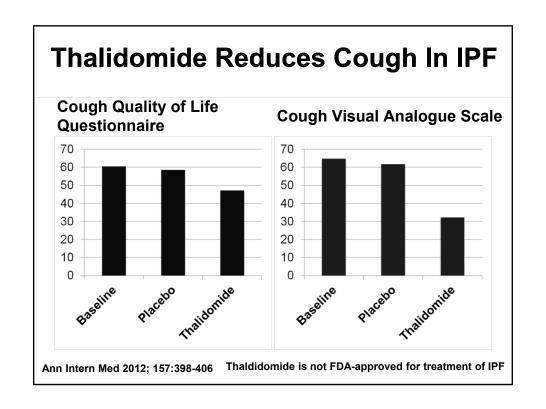
Sildenafil in IPF*


- No nitrates or unstable angina
- Initial dose: 20 mg then monitor for 1 hour:
 - Symptoms
 - Blood pressure
 - Oxygen saturation
- Maintenance dose: 20 mg three times daily

Sildenafil is not FDA-approved for treatment of IPF


When patients with IPF are worse:


- Progression of IPF
- Anemia
- Heart failure
- Pulmonary embolism
- Lung cancer
- Infection
- Pneumothorax


Acute interstitial pneumonitis

- Diagnosis of exclusion
- Sudden-onset of worsened oxygenation and ground glass infiltrates
- Lung biopsy = diffuse alveolar damage (identical to ARDS)
- Steroids may help

Are there other causes: ACE inhibitors? Chronic rhinitis? Asthma/COPD? Reflux? Palliating the IPF cough: Non-opioid anti-tussives (eg, benzonatate) Opioids Nebulized lidocaine? Thalidomide? Low dose corticosteroids?

Fatigue and IPF

- Anemia?
- Thyroid disease?
- Sleep apnea?
- · Heart failure?
- Exertional hypoxemia?

Sleep apnea is common in IPF:

- Incidence* = <u>88%!!!</u>
 - 20% mild
 - 68% moderate-severe
- Undiagnosed sleep apnea contributes to fatigue
- Quality of life can improve with CPAP

*Chest 2009; 136:772-778

What else can you do to improve the quality of life?

- Smoking cessation
- Maintenance of a normal BMI
- Vaccinations
- Recognize and treat depression

Image: JohannesJ

Image: Ohio DMV

Image: Stannah Stairlift

Vaccinations for patients with IPF:

- Influenza
- Pertussis (Tdap)
- Strep pneumoniae

Photo: Grook Da Oger

New CDC Pneumococal Vaccine Recommendations:

- Adults < 65 and low risk: vaccine not required
- Adults < 65 and moderate risk
 - PPSV-23
- Adults < 65 and high risk
 - PCV-13
 - PPSV-23 6-12 months later
 - Repeat PPSV-23 in 5 years
- Adults > 65
 - PCV-13
 - PPSV-23 6-12 months later
 - Repeat PPSV-23 in 5 years

CDC: Judy Schmidt

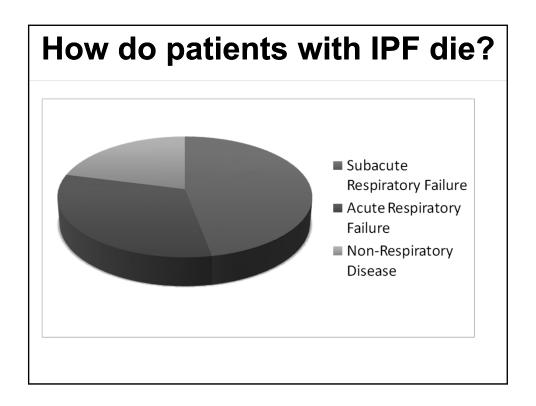
Idiopathic pulmonary fibrosis is ultimately a terminal disease

Start end-of-life discussions early

- Resuscitation and intubation
- Hospice
- · How patients die

Photo: Anthony Majanlathi

Galata Morente, Capitoline Museum, Rome


Outcome of patients admitted to the ICU with respiratory failure Die in ICU Die in hospital Discharged home

Hospice

- Anticipated life expectancy
 6 months
- Levels of care:
 - Routine home care
 - Continuous home care
 - Inpatient care
 - Respite care

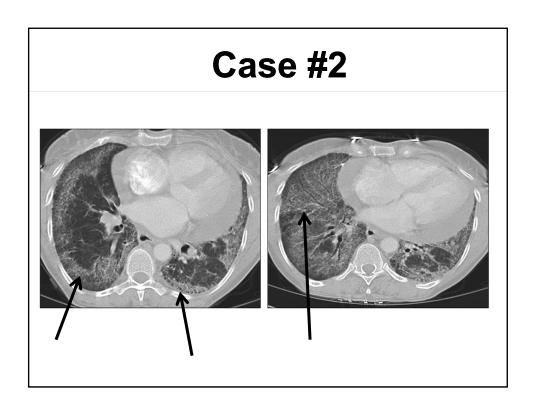
- Physician services
- Nursing services
- Social services
- Supplies
- Medications
- Bereavement counseling
- Hospice aide
- PT/OT/ST

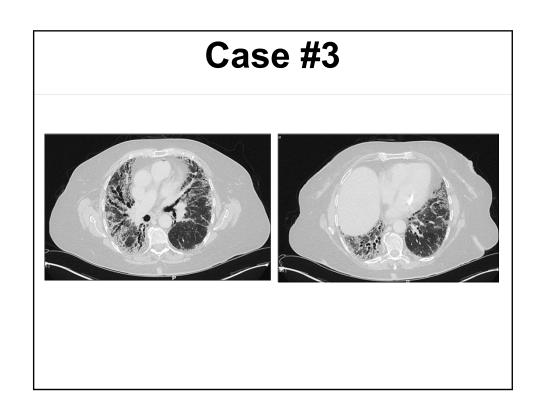
The improvement in the outcomes of your patients tomorrow will depend on clinical trials in your patients today

IPF Treatment: Summary

- Establish a confident diagnosis!
- New drugs: nintedanib & pirfenidone
- Don't do things that don't work
- Consider clinical trials
- Never miss an opportunity for transplant
- The little things make a big difference in quality of life

Case #1


Case #1



Case #2

