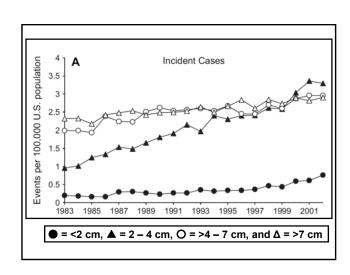
Contemporary Management of Renal Masses


Geoffrey N. Box, MD
Vice Chair of Educational Affairs
Assistant Professor
Direct, Laparoscopic Urologic Surgery
Department of Urology
The Ohio State University Wexner Medical Center
James Cancer Hospital and Solove Research Institute

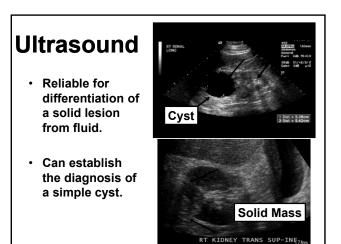
Outline

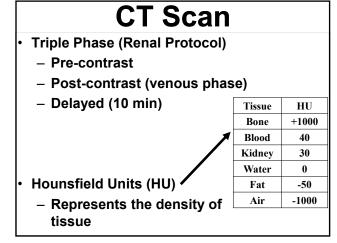
- Epidemiology
- Differential Diagnosis
- Evaluation
 - Imaging
 - Role for Biopsy
- Treatment
 - Surveillance
 - Surgery
 - Ablation
- Follow-up
- Cases

Renal Mass

- Increasing incidence with widespread use of cross-sectional imaging
- Renal lesions are seen in 15-25% of abdominal imaging studies
 - Most are benign cysts
- · Majority are detected incidentally.

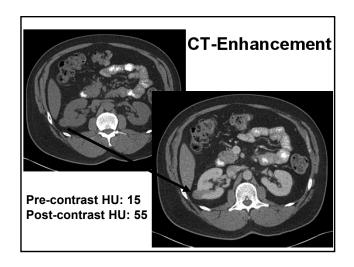
Renal Mass- Differential Diagnosis				
Malignant	Benign	Inflammatory		
Renal Cell Carcinoma -Clear Cell -Papillary -Chromophobe -Collecting duct Urothelial Based -Urothelial carcinoma -Squamous cell -Adenocarcinoma Sarcoma Wilms tumor Carcinoid Lymphoma Leukemia Metastasis	Simple cyst Angiomyolipoma Oncocytoma Metanephric adenoma Cystic Nephroma Mixed epithelial/stromal tumor Reninoma Leimyoma Pseudotumor	Abscess Focal pyelonephritis Xanthogranulomatous pyelonephritis Tuberculosis		

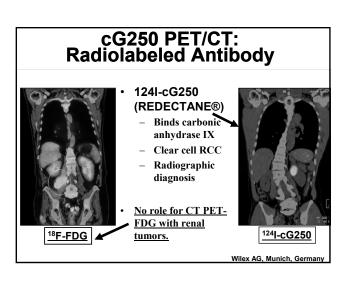

Renal Mass- Differential Diagnosis			
Malignant	Benign		
Renal Cell Carcinoma -Clear Cell -Papillary -Chromophobe	Simple cyst Angiomyolipoma Oncocytoma		


Is it Benign or Malignant?

- The question at hand.
- This can frequently determined by radiographic assessment.
- Size Matters
- Current trend is to biopsy more renal masses <4cm.

Radiographic Assessment · Ultrasound · CT · MRI

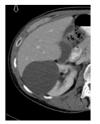

- Key Point:
 - Need to determine enhancement


- Can only be determined if a <u>contrast agent</u> is used
 - CT iodonated contrast
 - Enhancing Lesion = Pre-contrast to Post-contrast change in HU >15-20
 - MRI Gadolinium
 - Slightly more subjective

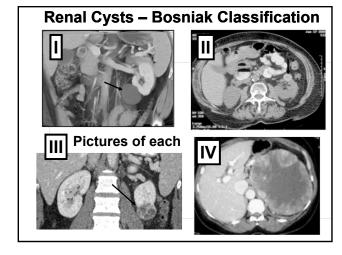
• Pre and Post Gadolinium

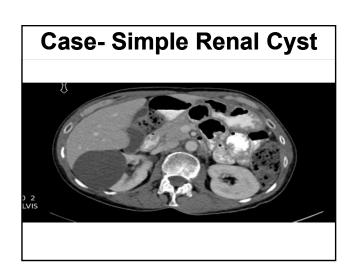
Risk of Contrast Agents

- IV Contrast (CT)
 - Contrast Allergy
 - Nephrotoxicity
 - Avoid with severe renal impairment
 - · Risk reduction: Hydration
- · Gadolinium (MRI)
 - No nephrotoxicity
 - Risk of Nephrogenic Systemic Fibrosis in those with severe renal impairment (EGFR<30).


Fat

- Solid masses with areas of negative HU (<-20) indicate the presence of fat and are <u>diagnostic of</u> AMLs.
- AML = Angiomyolipoma
- · AML is a benign tumor.




Renal Cysts

- The kidney is one of the most common locations in the body for cyst formation.
- · Renal cysts are cavities derived from renal tubules.
- Composed of a layer of epithelial cells enclosing a cavity filled with urine-like liquid or semi-solid material.
- · 20% by age 40
- 50% by age 60

Renal Cysts: Bosniak Classification			
Bosniak Class	Description	Cancer Risk	Management
I	No enhancement Smooth Wall No Septa No Calcifications	0%	None
II	No enhancement Hairline Septa Fine Calcifications	Minimal	None
IIF	No enhancement Hyperdense lesion Multiple Septa Thicker Calcifications	<10%	Surveillance
Ш	Thickened Wall with Enhancement	50%	Surgery
IV	Enhancing Nodule	90%	Surgery

Imaging Interpretation

- Enhancing renal masses are most likely malignant.
- Simple Cysts (Bosniak Type I):
 - Can be diagnosed by U/S or CT.
 - Do not need follow-up.
- · AMLs are benign and can be followed
 - >4cm = greater risk for spontaneous bleeding
 - Selective angioembolization vs. surgery

AML = Angiomyolipoma

Role for Biopsy

- <u>Historically</u>, renal masses have <u>not</u> been biopsied.
 - Most are malignant
 - Issues with accuracy/non-diagnostic rates
 - Fear of needle tract seeding
 - High reported complication rates

Role for Biopsy

- · Current role for biopsy is expanding
 - Especially for masses <4cm
- Updated date on biopsy results are much improved.

Role for Biopsy

- Contemporary results of renal mass biopsy:
 - Diagnostic rate: 92%.
 - RCC Subtype Concordance: 80-100%
 - Fuhrman Grade Concordance: 50-70%
 - Complications: <5%</p>
 - Hematoma most common

Marconi et al. Eur Urol 2015

Indications: Renal Mass Biopsy

- · R/o non-renal primary (mets or lymphoma)
- · +/- R/o benign lesions
- Confirm diagnosis and histologic subtype in patients with metastases or unresectable lesions
- · Confirm diagnosis:
 - Prior to ablative therapy
 - In patients considering observation when surgery is high risk

Indications: Renal Mass Biopsy

- R/o non-renal primary (mets or lymphoma)
- +/- R/o benign lesions
- Confirm diagnosis and histologic subtype in patients with metastases or unresectable lesions
- · Confirm diagnosis:
 - Prior to ablative therapy
 - In patients considering observation when surgery is high risk

Indications: Renal Mass Biopsy

- R/o non-renal primary (mets or lymphoma)
- +/- R/o benign lesions

Biopsy only if it will change management

patients with metastases or unresectable lesions

- · Confirm diagnosis:
 - Prior to ablative therapy
 - In patients considering observation when surgery is high risk

Tumor Size and Pathology

Tumor Size	RCC	Benign*	High Grade
≤2.0	75%	25%	4%
2.1-3.0	80%	20%	5%
3.1-4.0	84%	16%	25%

^{*}Oncocytoma and AML - 75%

J Urol 2006; 176:896

Renal Cancer 2015

- Incidence
 - 61,560 new cases
 - 14,080 deaths
- Peak incidence 5th-7th decades
- Men > Women
- Lifetime Probability of Developing Renal Cancer:
 - ▶1 in 49 male (#7)
 - ▶1 in 84 female (#10)

American Cancer Society. Cancer Facts & Figures 2015. Atlanta: American Cancer Society; 2015

Renal Cell Carcinoma – Risk Factors

- Tobacco Exposure
 - May account for ~20% of cases
- Obesity
 - May account for ~40% of cases in US
 - Risk increases ~30% for every 5kg/m² increase in BMI
- Hypertension
- · Low socioeconomic status and urban background
- More than 100 chemicals have been investigated but none have been definitively established as causative in RCC

Renal Cancer – Mortality

Site	Incidence/yr	Deaths 2015
Prostate Cancer	220,800	27,540 (12%)
Bladder Cancer	74,000	16,000 (22%)
Kidney Cancer	61,560	14,080 (23%)

American Cancer Society. Cancer Facts & Figures 2015. Atlanta: American Cancer Society; 2015

Renal Cancer – Presentation and Survival

Stage at Diagnosis	Distribution	5-yr Survival
Localized	61%	91%
Regional (lymph nodes)	17%	63%
Distant (metastatic)	18%	11%

Seer Database

Clinical Presentation

- 80% incidental
- Flank pain
- · Gross hematuria
- Palpable mass
- _"Classic Triad" <10%
- Microhematuria
- Paraneoplastic syndromes (10-20%)

Paraneoplastic syndromes

- · "Internist's Tumor"
 - Elevated ESR 55%
 - HTN 38%
 - Anemia 36%
 - 35% Cachexia
 - Pyrexia 17%
 - Elevated LFTs 14%
 - Hypercalcemia 5%
 - Polycythemia
 - Neuromyopathy 3%

Campbell-Walsh Urology 10th Ed.

Clinical Presentation - RCC

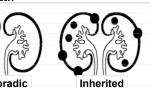
- · Local Tumor Growth
 - Hematuria
 - Flank Pain
 - Abdominal Mass
- Metastasis
 - Persistent Cough
 - Bone Pain
 - Cervical Lymphadenopathy
 - Constitutional Symptoms
- · Obstruction of IVC
 - Bilateral Lower Extremity Edema
 - Right-sided Varicocele (or nonreducing Varicocele)

Renal Cell Carcinoma: Histologic Subtypes

75

Clear cell Type: Freq (%):

Papillary Chromophobe Oncocytoma 15 5 5


Hereditary RCC

Disease	Gene (chromosome)	Histology	Frequency
von Hippel-Lindau	VHL (3)	Clear Cell	75%
HLRCC*	FH (1)	Papillary Type 2	10%
Birt-Hogg-Dube	BHD (17)	Chromophobe/Onc ocytoma	10%
Hereditary papillary RCC	Met (7)	Papillary Type 1	5%

*HLRCC = Hereditary Leiomyomatosis Renal Cell Carcinoma

VHL: Renal Cell Carcinoma

- RCC occurs in 50% of VHL patients
 - Males=females in VHL
 - 4th to 5th decade (39)
 - Now most common cause of death

Clear Cell RCC

Renal Cell Carcinoma: Staging

Stage	Tumor	Lymph Nodes	Metastasis
I	T1 (<7cm)	N0	M0
II	T2 (>7cm)	N0	M0
Ш	T1 or T2 T3 (vein/fat)	N1 N0 or N1	M0
IV	T4 (outside Gerota's) Any T	Any N Any N	Any M M1

Treatment Options

- Surveillance
- Surgical Excision
 - Radical Nephrectomy
 - Partial Nephrectomy

Gold Standard

- Needle Ablation
 - Cryoablation or Radiofrequency Ablation
- RCC does NOT respond to chemotherapy or radiation

Decision Making

- Tumor Characteristics:
 - Size
 - Location
 - Appearance
- · Patient Characteristics
 - Comorbid disease
 - Life expectancy
 - Patient desire

Active Surveillance (AS)

- · Incidentally detected tumors:
 - Small size (<4cm)
 - Elderly
 - Patients with significant comorbidity unfit for surgery
- Opportunity to observe the natural history of these small tumors.

Tumor Size and Pathology

Tumor Size	RCC	Benign*	High Grade
≤2.0	75%	25%	4%
2.1-3.0	80%	20%	5%
3.1-4.0	84%	16%	25%

*Oncocytoma and AML - 75%

J Urol 2006; 176:896

Active Surveillance

- Tumors <3cm
 - Risk of developing metastasis in 3 years is ~1%
- Average growth rate ~0.3cm/yr
- Most studies only have limited follow-up
- · Follow-up protocol is not defined
 - Repeat imaging every 6-12 months

Active Surveillance

- AUA Guidelines:
 - "AS is a reasonable option for patients with a limited life expectancy or for those who are unfit for or do not desire intervention."

Risk-adapted Management

- · Biopsy can be helpful
- More favorable histology:
 - Papillary type 1
 - Chromophobe
 - Low grade:
 - Fuhrman grade 1 and 2.

Risk-adapted Management

- 5 yr Cancer specific survival:
 - Fuhrman Grade (clear cell RCC):
 - I: 94%
 - II: 88%
 - · III: 63%
 - IV: 39%
 - Low (I&II): 90%High (I&II): 61%

Becker et al. Eur J Surg Oncol 2015

Surgery

- · Approach?
 - Open vs. Laparoscopic vs. Robotic
- · Radical vs. Partial Nephrectomy?
 - Nephron preservation

PARTIAL NEPHRECTOMY

 Partial nephrectomy oncologically equivalent to radical nephrectomy.

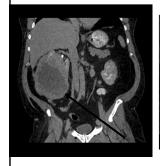
- L/S PN equivalent to Open PN with less morbidity.
 - Technical obstacles
 - MIS- more likely to have radical nephrectomy
 Gill et al. J Urol 2007; 178:41

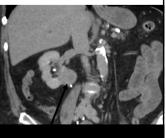
- More attention has been given to the significant morbidity associated the chronic kidney disease (GFR<60).
 - Surgical vs. Medical

Go. et al: NEJM 2004: 351: 1296

Nephron-preservation

Chronic Kidney Disease (CKD)


- GFR <60 ml/min/1.73m² for at least 3 months
- Important consideration with significant associated morbidity and mortality
- RCC patients are NOT donor nephrectomy patients
 - Often have HTN and/or DM
- Median survival after starting dialysis is 2-2.5 years


Renal Cancer – Nephron Preservation

CKD Stage (Estimated GFR (ml/min/1.73m²))	Death from Any Cause	Any Cardiovascular Event	Any Hospitalization
CKD III (30-44)	1.8	2.0	1.5
CKD IV (15-29)	3.2	2.8	2.1
CKD V (<15)	5.9	3.4	3.1

Go et al: NEJM 2004;351:1296.

Is the tumor amenable to a partial nephrectomy?

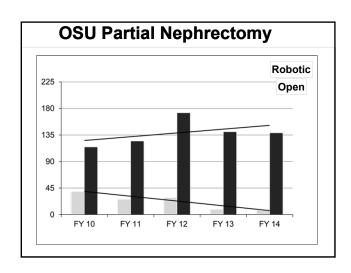
Indications for Nephron Sparing Surgery

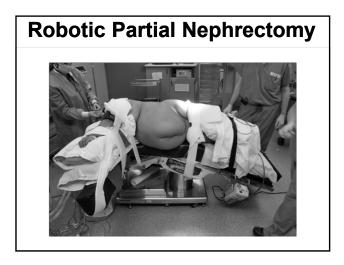
- Absolute/Imperative: To prevent anephric state
 - Anatomic/Functional solitary kidneyBilateral RCC
- <u>Relative</u>: Contralateral kidney is threatened by local, systemic, genetic conditions that may affect function
 - DM, HTN, stones, RAS, VHL
- · Elective: NSS with a normal contralateral kidney

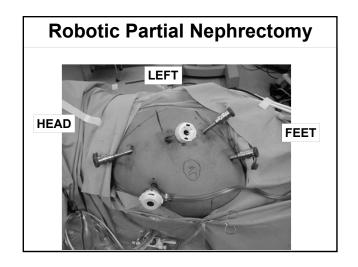
Uzzo: AUA Review Course

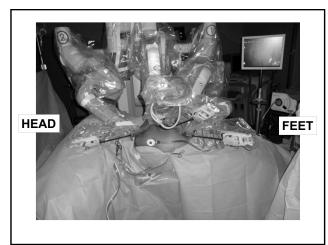
Partial Nephrectomy

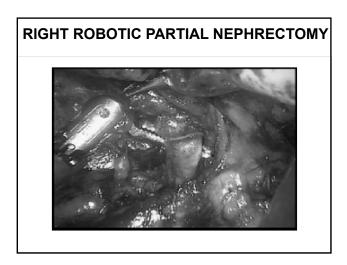
- GOALS
- Cancer Control
 - Margins
 - ·css
- Preservation of renal function
 - Technical ability to perform NSS
 - ↓ Warm Ischemia time
 - · Selective/no ischemia
- ↓ Complications
- ↓ Convalescence
- Robotics facilitates very difficult partial nephrectomies

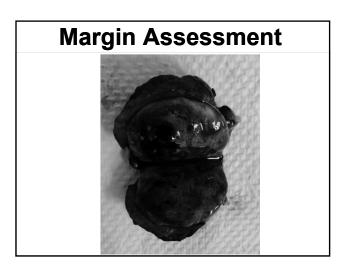

Partial Nephrectomy

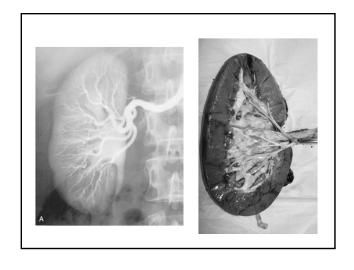

- Open
- Laparoscopic
- Robotic
- · Approach is not as important as preserving nephrons → partial nephrectomy

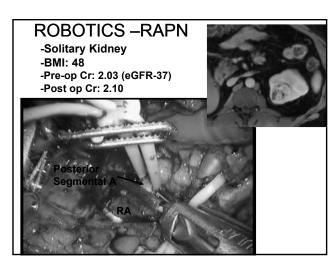

RAPN - Nationwide Inpatient Sample

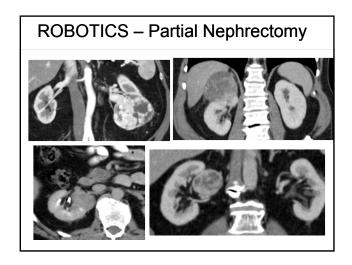

	RAPN	OPN	P value	
N (2008-2010)	9095	25461		
Transfusion	5.8%	10.6%	<0.001	
Post-op Complications	22.1%	30.5%	<0.001	
LOS	3	4	ns	
Prolonged LOS (>75th%ile)	12.4%	34.8%	<0.001	
Ghani et al. J Urol 2014;191:907				

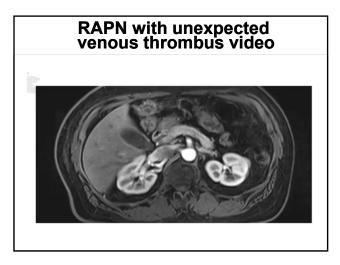

14

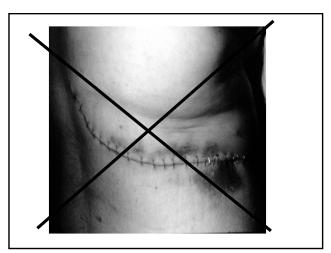


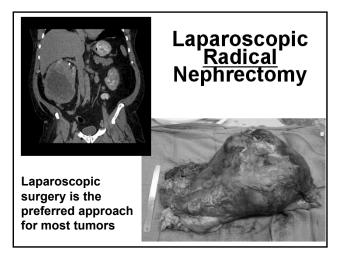






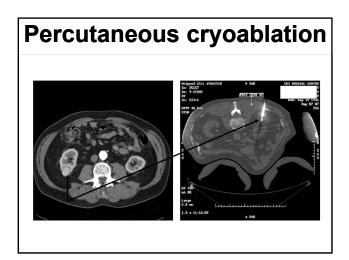


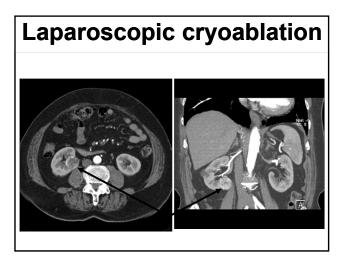


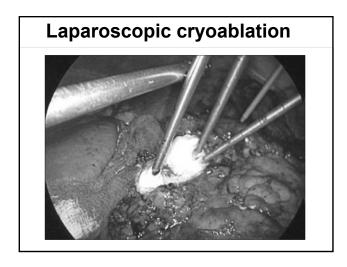


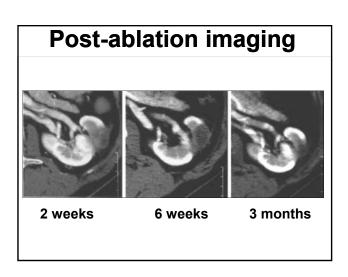
Renal ablative techniques

- Potential for less morbidity/complications
- Allows treatment of older patients who are not good surgical candidates
- Potential for similar efficacy to partial nephrectomy for select masses


Indications for ablation of renal masses


- Solid renal lesion <3cm (T1a)
 - Not good candidates:
 - Tumor deep in the renal sinus
 - Adjacent to the renal hilum or ureter
 - · Anterior tumors with adjacent bowel
- Best suited to treat renal lesions in patients with comorbidities that preclude a major surgical procedure
 - i.e. elderly, severe COPD, CV disease
- Renal insufficiency
- Solitary kidney
- Multifocal/Recurrent tumors secondary to VHL, BHD etc


Leveilee R, Wingo M. Ablation technologies for renal cell carcinoma: Oncology spectrum 1(2)


Ablative Modalities

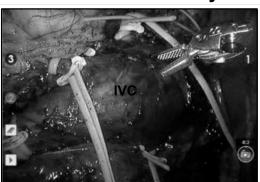
- Radiofrequency Ablation (RFA)
- Cryoablation
- Generally performed percutaneously with CT, MRI or U/S guidance.

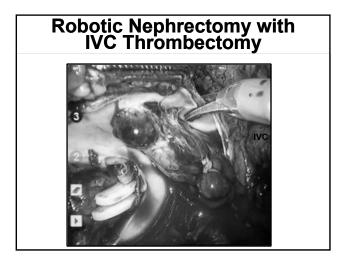
Treatment Options: LOCAL RECURRENCE FREE SURVIVAL

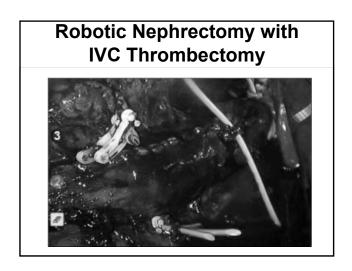
Treatment	Survival	Tumor Size (cm)	F/U (mo)
RFA	87.0%	2.7	19
Cryo	90.6%	2.6	18
LPN	98.4%	2.6	15
OPN	98.0%	3.1	47
LRN	99.2%	4.6	18
ORN	98.1%	4.8	58

RFA=radiofrequency ablation; Cryo=cryoablation; LPN=laparoscopic partial nephrectomy; OPN=open partial nephrectomy LRN=laparoscopic radical nephrectomy; ORN=open radical nephrectomy

Adapted from Campbell-Walsh Urology 10th Ed

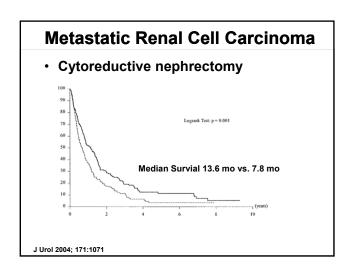

Treatment Options - Summary

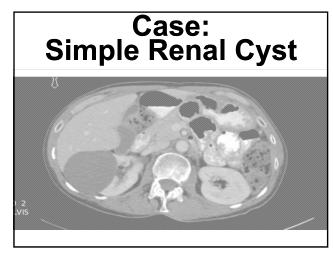

- Surgery
 - Gold Standard
 - Suitable for tumors of all sizes
 - Nephron-sparing when possible
 - Minimally invasive approaches available
- Needle Ablation
 - Tend to have higher local recurrence rates
- Active Surveillance
 - Long term outcomes unknown
 - Not best for younger/healthier patients

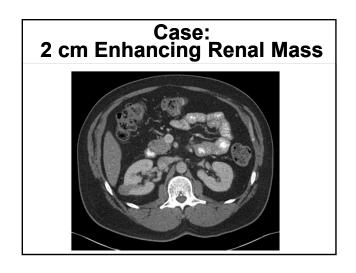

Advanced Disease

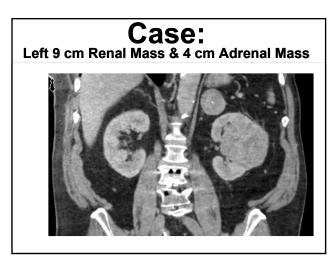
- Surgery remains an integral part of the management of these patients.
 - Tumor thrombus in IVC
 - Regional Lymphadenopathy
 - Metastatic disease
- Surgery is the only treatment that offers the opportunity for cure

Robotic Nephrectomy with IVC Thrombectomy









Conclusion

- · Renal masses are typically found incidentally
- A simple renal cyst can be diagnosed by U/S or CT and does not need follow-up
- Most solid renal masses represent renal cell carcinoma
- Nephron-sparing surgery should be perform when technically feasible.
- Most surgery can be performed in a minimally invasive fashion (laparoscopic/robotic)