

Atrial Fibrillation Overview and Updates

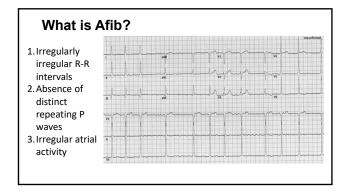
Jim Liu, MD, FACC

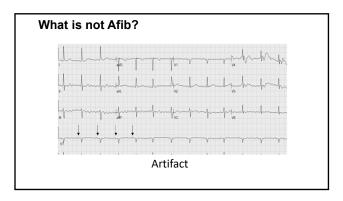
Assistant Professor - Clinical Department of Internal Medicine Department of Internal Medicine
Division of Cardiovascular Medicine
The Ohio State University Wexner Medical Center

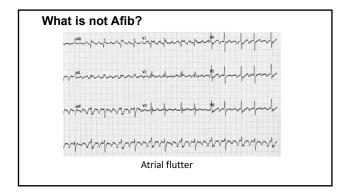
Objectives

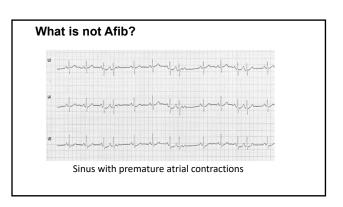
- 1. Review Afib evaluation
- 2. Recognize importance of lifestyle and risk factor modification
- 3. Discuss stroke prevention
- 4. Understand differences in rate and rhythm management

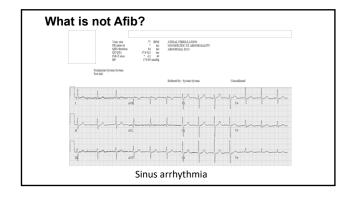
Why is Afib important? Prevalence of Afib by age 3-6 million people estimated to have Afib in the US Projected to increase to 6-16 million by 2050 Lifetime risk of developing Afib from age 40-95: • 26% for men 23% for women


Why is Afib important?

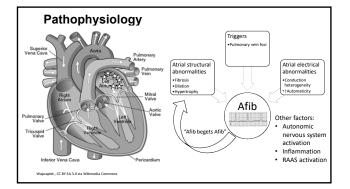


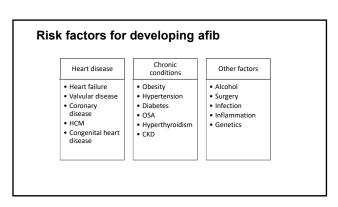

- >467,000 annual hospitalizations
- 2x as likely to be hospitalized
- >99,000 deaths per year




- Adds \$8,700 per year per patient
- Adds \$26 billion to US healthcare annually

AF Terminology

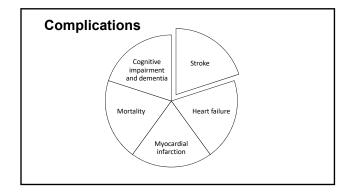

Paroxysmal Afib
Afib that terminates spontaneously or with intervention within 7 days of onset

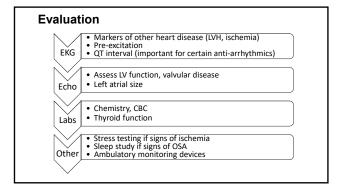

Persistent Afib Continuous Afib that is sustained for more than 7 days.

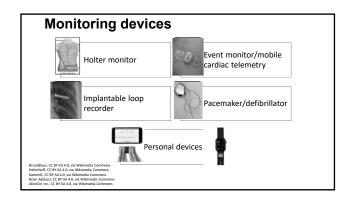
Long-standing persistent Afib Continuous Afib more than 12 months in duration

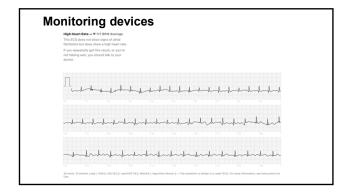
Permanent Afib
Patient and clinician decide to stop further attempts to restore or maintain sinus rhythm

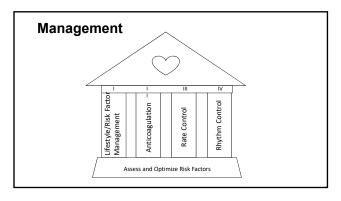
Non-valvular Afib (*Updated in 2019*)
Afib in the absence of moderate-to-severe mitral stenosis or mechanical heart valve
Previous definition included rheumatic mitral stenosis, bioprosthetic or mechanical valve, mitral valve repair

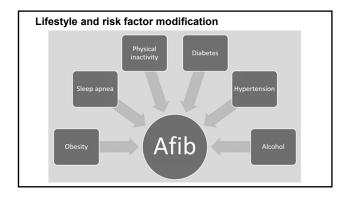


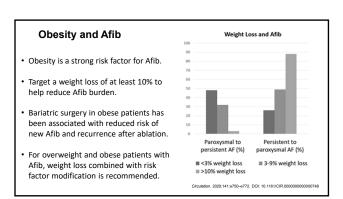



Symptoms


- Palpitations
- Shortness of breath
- Chest discomfort
- Lightheadedness
- Weakness
- Fatigue
- Generalized malaise
- Heart failure symptoms
- Angina
- Syncope or near syncope
- No symptoms







Lifestyle and risk factor modification

- Physical Activity
 Increased physical activity (150min/week of moderate-intensity exercise) can help with prevention and treatment of Afib
 Sleep Disordered Breathing
 Treatment of SDB may improve Afib burden
 Screen and treat concomitant SDB in patients with Afib
 Diabetes

- Diabetes
 DM associated with higher risk for Afib
 Glycemic control has been associated with reduced risk for Afib

- Glycemic control has been associated with risk of developing Afib
 Hypertension
 Hypertension associated with risk of developing Afib
 Smoking
 Increases Afib risk. COPD is an independent risk factor.
 Smoking negatively affects efficacy of Afib ablation
 Alcohol
 >14 drinks/week significantly increased risk of Afib
 Reduced alcohol consumption for patients with moderate to high levels of

Stroke prevention

- Most frequent major complication of Afib
- Non-valvular Afib increases risk of stroke by 5x
- Greater risk for recurrent stroke, more severe disability, increased mortality
- Due to stasis of blood and reduced left atrial blood flow resulting in thrombus formation
- Left atrial appendage is most common location for thrombus formation
- Stroke risk is independent of Afib type (paroxysmal vs persistent vs permanent)

Left atrial appendage thrombus

Left atrial appendage thrombus

Normal left atrial appendage

Dense spontaneous echo contrast

Left atrial appendage thrombus

Normal left atrial appendage

with probable thrombus

Dense spontaneous echo contrast Left atrial appendage thrombus

Cardiac CT

CHA₂DS₂VASc Score

 $\mathsf{CHA}_2\mathsf{DS}_2\text{-VASc score is recommended for stroke risk assessment}$

Letter	Risk factor			
С	Congestive heart failure			
Н	Hypertension			
A ₂	Age ≥ 75	2		
D	Diabetes	1		
S ₂	Stroke, TIA, thromboembolism			
٧	V Vascular disease (myocardial infarction, peripheral arterial disease, aortic plaque)			
Α	A Age 65-74			
Sc	Sex category (female sex)	1		

CHA₂DS₂VASc Score

- For patients with Afib and CHA₂DS₂VASc score ≥2 for men and ≥3 for women, oral anticoagulation is recommended. (*Update*)

 CHA₂DS₂VASc score Annual Stroke Rate

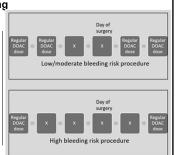
 0 0.2%

 1 0.6€
- For patients with Afib and CHA₂DS₂VASc score of 1 for men and 2 for women, prescribing anticoagulant to reduce stroke risk may be considered.
- For patients with Afib and CHA_2DS_2VASc score of 0 for men and 1 for women, it is reasonable to omit anticoagulation.
- · Selection of anticoagulant should be based on risk of thromboembolism, irrespective of whether Afib pattern is paroxysmal, persistent, or permanent.

2 2	
0	0.2%
1	0.6%
2	2.2%
3	3.2%
4	4.8%
5	7.2%
6	9.7%
7	11.1%
8	11%
9	12.2%

Anticoagulants

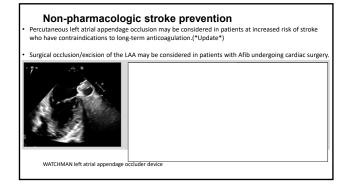
- Choices include
 - Warfarin
 - Dabigatran
 - RivaroxabanApixabanEdoxaban
 - Rivaroxaban Non-vitamin K oral anticoagulants (NOACs) or
 - Apixaban direct-acting oral anticoagulants (DOACs)
- DOACs are recommended over warfarin in Afib patients without moderate-tosevere mitral stenosis or a mechanical heart valve. (*Update*)
- For patients with Afib who have mechanical heart valves, warfarin is
- For patients who are unable to maintain therapeutic INR, DOAC is recommended.

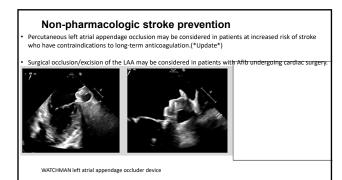

DOACs for Afib						
	Mechanism	Comparison to warfarin	Kinetics	Dosing	Dosing adjustments	Reversal agent
Dabigatran	Direct thrombin inhibitor	110mg: stroke rates similar to warfarin, lower major hemorrhage 150mg: stroke rate lower than warfarin, similar major hemorrhage	T ¹ / ₂ = 12-17hrs Peak effect 2hrs	150mg BID	- 75mg BID if CrCl 15-30 mL/min - Avoid use if CrCl <15 mL/min	- Idarucizumab - Prothrombin complex concentrate (PCC)
Rivaroxaban	Direct factor Xa inhibitor	Non-inferior to warfarin for stroke prevention, no difference in major bleeding, less frequent ICH and fatal bleeding	T ¹ / ₂ = 5-9hrs Peak effect 3hrs	20mg daily with largest meal of day (evening)	15mg daily with evening meal if CrCl 15-50 mL/min - Avoid use if CrCl ≤15 mL/min	- Andexanet alfa - PCC
Apixaban	Direct factor Xa inhibitor	Superior to warfarin for stroke prevention, less bleeding and lower mortality	T ¹ / ₂ = 12hrs Peak effect 3hrs	5mg BID	- 2.5mg BID if 2 of the following: age ≥80 yrs, body weight ≤60 kg, or serum Cr ≥1.5 mg/dL - No other adjustment for ESRD	- Andexanet alfa - PCC
Edoxaban	Direct factor Xa inhibitor	Non-inferior to warfarin for stroke prevention, lower rates of bleeding	T ¹ / ₂ = 10-14hrs Peak effect 2hrs	60mg daily	- Avoid use if CrCl >95 mL/min - 30mg daily if CrCl 15-50 mL/min - Avoid use if CrCl <15 mL/min	PCC

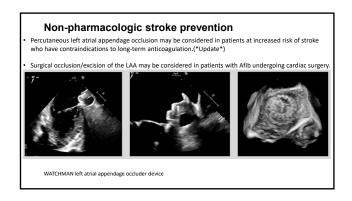
Interruption and bridging

Patients on warfarin

- Bridging is recommended for patients with Afib and mechanical valve.
- For patients with Afib without mechanical valve:
 - Consider risks of stroke vs bleeding
 Absence of bridging found to be non-inferior to bridging with LMWH and associated with
 - decreased risk of bleeding

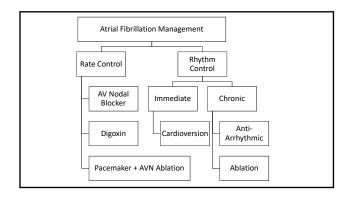

 Bridging anticoagulation may be appropriate only for very high thromboembolic risk

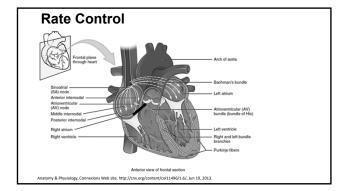



What about aspirin?

- Anticoagulant ≠ Antithrombotic (anticoagulant & antiplatelet)
- "Anticoagulant" replaced "antithrombotic" in updated guidelines.
- Aspirin no longer recommended for stroke prevention in low risk patients.(*Update*)

Grantmidnisht. CC BY-SA 4.0. via Wikimedia Common

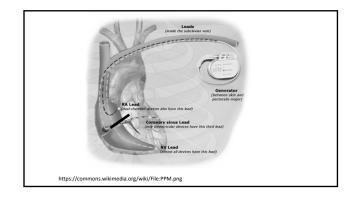




Left Atrial Appendage Closure

- High risk for bleeding
 Previous history of bleeding (major and non-major)
- Non-compliant or labile INR
- High risk lifestyle
 Evaluation
 CHADSVASC ≥ 3
- - Suitable for anticoagulation Appropriate candidate (above)
 - No other need for anticoagulation (mechanical valve, left ventricular thrombus,
- Management
 Anticoagulation for 45 days followed by dual anti platelet therapy for 6 months

 - Chronic Aspirin therapy
 Recently approved for dual anti platelet therapy only

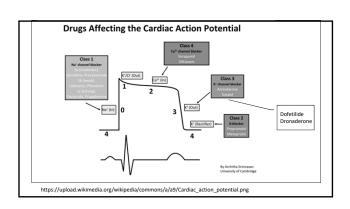


Rate Control

- Patient Population
 - Permanent atrial fibrillation
 - Asymptomatic
- Preserved LV function
- Acute Management
 - IV beta blocker or nondihydropyridine calcium channel blocker
 - Avoid nondihydropyridine calcium channel blocker in decompensated heart failure
- Chronic HR Goal
 - Resting heart rate < 80bpm
 - If asymptomatic and normal LV function, can consider a more lenient goal (<110bpm)

January, Craig T., et al. "2014 AHAIACCHRS guideline for the management of patients with afrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society." Journal of the American College

Class	Example	Mechanism	Side Effects
Beta Blocker	Metoprolol Carvedilol Atenolol Propranolol	Rate control achieved by inhibiting beta-1 receptors	DepressionErectile DysfunctionBradycardiaFatigue
Nondyhdropyridine Calcium Channel Blocker	Diltiazem Verapamil	Inhibits calcium ion entry during depolarization	Constipation Lower Extremity Edema
Cardiac Glycoside	Digoxin	Suppression of AV node conduction via inhibition of Na/K ATPase -> increased intracellular Ca	Too many to list Requires drug level monitoring Toxicity may require Digi-Fab



Rhythm Control

- Patient Population
 - Symptomatic
 - LV dysfunction and heat failure
 - Non permanent atrial fibrillation

Acute Management

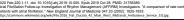
- Electrical or chemical cardioversion
- Prior to cardioversion
- 3-4 weeks of uninterrupted anticoagulation regardless of CHADSVASC score or onset within 48 hours of cardioversion
 Transesophageal echo or CT pulmonary vein showing no left atrial or left atrial appendage thromb

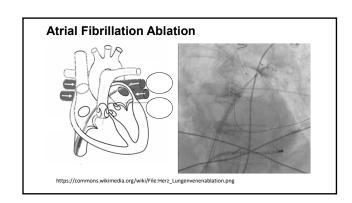
Class	Mechanis m	Drug	Monitoring	Contraindications	Notes
1c	Na Channel Blockade	- Flecainide - Propafenone	- Baseline ECG Stress Test - Renal and Liver	- Structural heart disease - Conduction disease	Must be taking with an AV nodal blocking agent
III	K Channel Blockade	- Sotalol - Dofetilide - Dronaderone	- QT/QTc - Renal Function	- ESRD - Prolonged QT - Bradyarrhythmia	Do not use dronaderone in symptomatic heart failure, NYHA IV or permanent AF
Many	Na, K, CCB, and BB	Amiodarone	- Thyroid - Liver - Pulmonary (CXR and DLCO)	Pulmonary and liver disease Hyperthyroid Heart block lodine hypersensitivity	- Photosensitivity - Ocular and neurologic involvement

Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) Trial

- 2002 in New England Journal of Medicine
- Compared mortality in rate vs rhythm control strategy in ~4000 patients
- Majority of rate control- beta blocker and digoxin
- Majority of rhythm control- amiodarone and sotalol
- Higher incidence in rhythm control:

- pulmonary event (7.3 vs 1.3)
 gastrointestinal event (8.0 vs 2.1)
 bradycardia (6.0 vs. 4.2)
 prolonged QTc (1.9 vs 0.3)
- Conclusion- "Management of atrial fibrillation with the rhythm-control strategy offers no survival advantage over the rate-control strategy, and there are potential advantages, such as a lower risk of adverse drug effects, with the ratecontrol strategy"


Why Choose Rhythm Control?


- Much has changed since 2002
- Only 14 patients received an AF ablation
- Therapeutic INR in only 62.3%

· Follow-up Analysis

- 5 year follow-up showed a greater risk of heart failure in rate control strategy (21.4% vs 16.4%)

 Increase in total mortality (HR 2.83), cardiac mortality (4.27)
- and hospitalization (HR 3.04)
- Risk factors for heart failure
 - Rate >80 bpm
- AF burden, especially >75%

Ablation Outcomes

• Mortality

- CABANA: No difference in all cause mortality. Improvement in hospitalization and AF recurrence
- CASTLE-AF: Significant improvement in mortality in systolic heart failure (HR 0.56)

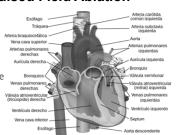
• Timing

 EAST-AFNET 4: early rhythm control resulted in reduction of stroke by 1/3 and total mortality reduced by 16%

Symptoms

• STOP AF: Improvement in symptoms with ablation (54%) vs AAD (29%)

Picker DL, Mark DB, Robb RA et al. Effect of Califord Ablation vs. Antianthymics Dung Therapy on Mortally, Stroke Bleeding, and Cardiac Arrest Among Patient With Asial Filedination: The CABANA Reproduced Gircles (Tisul, Abs. 2019;2(15));1571–2726. doi:10.1019/issep.2019.00630. https://doi.org/10.1019/issep.2019.00630. https://doi.org/10.1019/issep.2019/issep.2019/issep.2019/issep.2019/issep.2019/issep.2019/issep.2019/issep.2019/issep.2019/issep.2


Safety of Ablation- CABANA

	Ablation (n=1108)	Drug Therapy (n=1096)
Death	58 (5.2)	67 (6.1)
Disabling Stroke	3 (0.3)	7 (0.6)
Serious Bleeding	36 (3.2)	36 (3.3)
Cardiac Arrest	7 (0.6)	11 (1.0)

Packer DL, Mark DB, Robb RA, et al. Effect of Catheter Ablation vs Antiarrhythmic Drug Therapy on Mortality, Stroke, Bleeding, and Cardiac Arrest Among Patients With Atrial Fibrillation: The CABANA Randomized Clinical Trial. JAMA. 2019;321(13):1281–1274. doi:10.1016/jama.2019.0803

On the Horizon-Pulsed Field Ablation

- Electroporation through direct current pulses
- Rapid ablation potential
- Initial data is supportive of low risk for collateral damage
 - Esophagus
 - Phrenic nerve
 - Coronary artery?
 - Pericardial effusion

 $https://commons.wikimedia.org/wiki/File: Relations_of_the_aorta_trachea,_esophagus_and_other_heart_structures-es.svg$

Conclusions

- Atrial fibrillation remains a significant burden for patients and the medical system
- Appropriate prevention of stroke based on risk factors is of utmost importance
- Risk factor modification can have a significant improvement in atrial fibrillation burden
- Rhythm control options, especially early in the course of disease can reduce the burden of disease and improve outcomes
- Ablation therapy is safe and efficacious, with a larger role in the management of atrial fibrillation